
mbed Starter Kit Experiment Guide

Introduction
Whether you have just purchased the mbed Starter Kit or you are just
checking out this page to see what mbed is all about, you are in for a treat.
The mbed platform is a project created by ARM to assist with rapid
prototyping on microcontrollers.

Rapid prototyping? Come again?

Yes. Rapid prototyping. ARM has created a system for programming their
microcontrollers with ease. This means no more fiddling with expensive and
bloated development environments or fussing with confusing programming
steps. mbed.org offers an online compiler that handles most of the setup
and compiling steps for you.

Don’t worry about the specific steps, we will cover them in detail in the first
tutorial. By following the next few tutorials, you will become an mbed kung
fu master*!

*Disclaimer: Kung fu not an actual part of mbed development.

Overview

The mbed project actually contains a large variety of mbed platforms. For
this kit and the following tutorials, we will be concerned with the LPC1768.

SparkFun mbed Starter Kit
 KIT-14458

Page 1 of 85

If you have purchased the mbed Starter Kit or the LPC1768, open up the
LPC1768 box, and you will find a pinout card. This card is extremely useful
for finding out which pins do what on the LPC1768.

Features

Here are the technical specifications of the LPC1768:

• NXP LPC1768 MCU
◦ ARM® Cortex™-M3 Core
◦ 96MHz
◦ 32KB RAM
◦ 512KB FLASH
◦ Ethernet, USB Host orDevice, SPI x2, I2C x2, UART x3, CAN,

PWM x6, ADC x6, GPIO
• Platform form factor

◦ 54x26mm
◦ 40-pin 0.1" pitch DIP package
◦ 5V USB or 4.5-9V supply
◦ Built-in USB drag ‘n’ drop FLASH programmer

Suggested Reading

• What Is Electricity?
• Voltage, Current, Resistance, and Ohm’s Law
• What is a Circuit?
• How to Use a Breadboard
• Analog vs. Digital
• Binary
• Logic Levels
• Digital Logic
• Pulse-width Modulation
• Pull-up Resistors
• Light

Table of Contents

Page 2 of 85

Now for the part you have been waiting for. The tutorials! This is where you
get to open your mbed kit and play with all those cool parts. You should
start with Tutorial #1 in order to get familiar with mbed.org and the
programming environment.

Tutorial 1 - Getting Started
We setup the mbed.org development environment
and create our first program: Blinky!

Tutorial 2 - Buttons and PWM
Let’s make some light! We use some buttons to
control the colors of an RGB LED

Tutorial 3 - Graphic LCD
The mbed kit includes a 1.44" LCD that we can
make do cool things. We learn how to draw text
and shapes on the LCD.

Tutorial 4 - Accelerometer
Now we start to pick things up. Literally. Using the
accelerometer, we can interact with the mbed by
tilting it in different directions.

Tutorial 5 - Internet Clock
The LPC1768 has the ability to connect to the
Internet. Using an Ethernet cable, we can read the
current time from an Internet server and display the
time on our LCD.

Tutorial 6 - USB Host and Threading
Our mbed board can act like a USB host. This
means that we can connect things like keyboards
to it.

Tutorial 7 - USB Device
In addition to acting like a USB host, the mbed can
also act like a USB device! This means that we can
have it control the mouse pointer on our computer,
for example.

Tutorial 8 - Temperature Logging
Want to see how the temperature varies over time
in an area? We connect a temperature sensor and
an SD card to the mbed to log temperature
measurements.

Tutorial 9 - PWM Sounds
Let’s make some music! We can use pulse-width
modulation (PWM) to control sounds out of a
speaker or set of headphones.

Tutorial 10 - Hardware Soundboard
In the final project, we load some sound clips onto
our SD card and use the mbed to play one
whenever we push a button.

Page 3 of 85

Experiment 1: Blink an LED
Welcome to the world of mbed! In the following series of tutorials, we will
show you how to configure your mbed.org account, connect some
hardware, and program your mbed controller to do some cool things. Each
tutorial will list the required components, but if you are just starting out with
mbed, we recommend you get the mbed Starter Kit, which will provide all
the necessary hardware to complete the tutorials.

In this tutorial, we will unbox the mbed LPC1768, connect it to our
computer, configure our mbed.org profile, and write our first blinking LED
program.

Account Setup

For this first tutorial, we will be using the LPC1768 and the USB mini-B
cable. So, open your mbed NXP LPC1768 box and remove the LPC1768
controller and USB cable.

Plug one end of the USB cable into the LPC1768 and the other end into
your computer. The blue power LED should light up.

After a few seconds, your computer should recognize the mbed controller
as a standard USB drive. Open up a Windows Explorer (Windows) or
Finder (OS X) and navigate to the mbed drive.

Page 4 of 85

Double-click on the MBED.HTM link, which should open up a webpage that
asks you to create a new mbed account.

IMPORTANT: Some older versions of the LPC1768 contain a link to a
page that does not exist. If you get an error, navigate to mbed's
Account Signup page to create an account.

Click “Signup” and follow the prompts to create a new mbed.org account.
Once you have created an account, navigate to developer.mbed.org.

Click on “Login or signup” if you are not already signed in. Once signed in,
click on “Compiler” in the top right. You will be presented with mbed’s online
compiler.

The Code

In the upper-left corner of the mbed Compiler, select “New” and then “New
Program.”

Page 5 of 85

You will see a prompt appear asking you to name your new program. Make
sure that “Blinky LED Hello World” is selected for your Template and that
“mbed_blinky” is set as your Program Name.

Click “OK” and you will see your new program appear in your workspace.

Click on “main.cpp” in the pane on the left side to open up our C++
program.

The code imports the mbed.h library, configures the pin for the LPC1768’s
onboard LED to output, and blinks the LED forever. It has been copied here
for reference.

#include "mbed.h"

DigitalOut myled(LED1);

int main() {
while(1) {

 myled = 1;
wait(0.2);

 myled = 0;
wait(0.2);

 }
}

On the top bar, click “Compile.”

Page 6 of 85

This will start the compile process and download the program as a binary
file. Depending on your browser settings, this might be automatically
downloaded. If you are asked where to download the file, choose your
default Downloads folder.

Open up an Explorer (or Finder on OS X) window and navigate to your
Downloads folder. You will see your blinky program as a .bin file.

Copy the .bin file to your MBED drive.

If you look in the MBED drive, you should see two files: the original
MBED.HTM link and your new blinky program.

Without disconnecting the USB cable, press the button in the middle of the
LPC1768. You should see the bottom left LED begin to flash off and on.
The blinking LED shows that your code is running!

Page 7 of 85

Concepts

This is our first program with the mbed, so we should talk about what is
going on.

Setup and Loop

If you have used Arduino in the past, it might come as a surprise that you
were writing code in a language very close to C and C++. One thing you
should be aware of is that Arduino wraps up the setup and loop stages into
nice functions for you. For example, you might see this in Arduino:

void setup() {

// Your setup code goes here

}

void loop() {

// Your loop code goes here

}

In Arduino, the setup code runs once, and the loop code runs forever.

In mbed (and most other embedded systems), we must create our own
setup and loop sections within main(). Every C and C++ program must
have a main() function, as this is the entry point for the program (i.e. this is
where the program begins execution when you run it).

Using our concepts of setup and loop, this is what the basic template looks
like in mbed:

int main() {

// Your setup code goes here

while(1) {

// Your loop code goes here

 }
}

Much like in the Arduino example, the program executes the setup code
once (as soon as it enters the main() function) and executes the loop code
forever. Notice that we explicitly put the loop code inside of a while loop. It
is possible to make the while loop exit, and the program would stop
running. You would need to reset the microcontroller to restart the program.

Header Files

The very first line in our blinky program is

Page 8 of 85

#include "mbed.h"

This tells the compiler to include (i.e. copy into our program) a separate file
(mbed.h in this case) when we compile. mbed.h is a header file that
declares a set of functions, constants, classes, etc. for our use. Many times,
the implementation of these functions, constants, classes, etc. are defined
in a separate library, and the header file provides an interface. As long as
we include the header file and the header file and library are in our search
path (for our mbed programs, just make sure that the library is copied into
our project directory - shown by the little gear icon in this example), we can
use the functions, constants, classes, etc. listed in the header file.

Going Further

This is just the beginning! You got a taste of the mbed Compiler and built
your first program. Now that you understand how to use the mbed
Compiler, we will move on to more advanced topics and show you how to
connect other pieces of hardware to make the LPC1768 do fun and
interesting things.

Beyond the Tutorial

• Can you make the LED blink slower?
• Can you make another LED blink?
• Can you make an LED blink exactly 10 times and then stop? (Hint:

the while(1) loop continues forever. How would you modify that to
stop after 10 times?)

Digging Deeper

• Read about mbed’s SDK
• Read about mbed’s HDK
• Read about mbed’s Compiler
• Read about mbed’s website
• Take a look at mbed’s Handbook, which has official mbed libraries
• Take a look at mbed’s Cookbook, which has user-submitted libraries

and projects

Experiment 2: Buttons and PWM
Now that you have had a chance to set up your mbed account and blink an
LED, we will move on to simple human interaction: pushbuttons! In this
tutorial, we add 3 pushbuttons to the LPC1768 and use them to control the
colors in an RGB LED.

Page 9 of 85

mbed Starter Kit - Part 2: Buttons and PWM SparkFun Wish List

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary. The experiment will be using 3x
330Ohm and 3x 10kOhm resistors.

Resistor 10K Ohm 1/4 Watt PTH - 20 pack (Thick Leads)
PRT-14491

Resistor 330 Ohm 1/4 Watt PTH - 20 pack (Thick Leads)
PRT-14490

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

(3) Momentary Pushbutton Switch - 12mm Square
COM-09190

This is a standard 12mm square momentary button. What we really li…

LED - RGB Clear Common Cathode
COM-00105

Ever hear of a thing called RGB? Red, Green, Blue? How about an R…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

(2) Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Schematic

Click on schematic to view larger image.

Page 10 of 85

Connections

Connect the LPC1768 to the buttons and LED in the following fashion.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table below.

Fritzing Diagram

Be careful with the direction of the LED (polarity matters!). In the diagram,
the flat edge (see the Tips section below) is facing to the left.

Note that the colors of the wires do not matter. Feel free to use any color
you like! Do not worry if your kit does not have 5 black wires.

Hookup Table

Place the LPC1768 in the first breadboard with pin VOUT in position i1 and
pin 20 in position b20.

Connect the rest of the components as follows:

Component Breadboard 1 Breadboard 2

RGB LED b25
(RED)

b26
(GND)

b27
(GREEN)

b28
(BLUE)

330
Resistor

e25 g25

330
Resistor

e27 g27

330
Resistor

e28 g28

Pushbutton d6 d8 g6 g8

Pushbutton d14 d16 g14 g16

Pushbutton d22 d24 g22 g24

10k
Resistor

i6 (+)

Page 11 of 85

10k
Resistor

i14 (+)

10k
Resistor

i22 (+)

Jumper
Wire

j1 (+)

Jumper
Wire

a1 (-)

Jumper
Wire

a5 h6

Jumper
Wire

a6 h14

Jumper
Wire

a7 h22

Jumper
Wire

j20 j25

Jumper
Wire

j19 j27

Jumper
Wire

j18 j28

Jumper
Wire

a26 (-)

Jumper
Wire

a8 (-)

Jumper
Wire

a16 (-)

Jumper
Wire

a24 (-)

Tips

Pushbuttons

The leads across each other on the pushbuttons are always connected to
each other. The leads on the same side are only connected when button is
pressed.

Page 12 of 85

LED

You can use a set of needle nose pliers to bend the LED’s leads and a pair
of cutters to fit the LED in the breadboard. Note that there is a flat side on
the plastic ring around the bottom of the LED. This denotes the side with
the pin that controls the red color. See this tutorial to learn more about
polarity.

Resistors

330 ohm resistors are given by the color code “orange orange brown.”

330 ohm resistors

10k ohm resistors are given by the color code “brown black orange.”

Page 13 of 85

10k ohm resistors

The Code

If you have not done so already, sign into your mbed.org account. Go to the
Compiler and create a new program. Leave the template as “Blinky LED
Hello World” and give it a name such as “rgb_buttons.” Click OK and wait
for your new program to be created.

Once that is done, click “main.cpp” under your project folder (e.g.
“rgb_buttons”) in the left “Program Workspace” pane. Delete all of the code
in main.cpp so you are left with a blank project (we still want to use the
“Blinky LED Hello World” template, as it automatically links “mbed.h” for
us).

Program

Copy the following code into main.cpp of your rgb_buttons project.

Page 14 of 85

#include "mbed.h"

// Define buttons
InterruptIn button_red(p5);
InterruptIn button_green(p6);
InterruptIn button_blue(p7);

// Define LED colors
PwmOut led_red(p21);
PwmOut led_green(p22);
PwmOut led_blue(p23);

// Interrupt Service Routine to increment the red color
void inc_red() {

float pwm;

// Read in current PWM value and increment it
 pwm = led_red.read();
 pwm += 0.1f;

if (pwm > 1.0f) {
 pwm = 0.0f;
 }
 led_red.write(pwm);
}

// Interrupt Service Routine to increment the green color
void inc_green() {

float pwm;

// Read in current PWM value and increment it
 pwm = led_green.read();
 pwm += 0.1f;

if (pwm > 1.0f) {
 pwm = 0.0f;
 }
 led_green.write(pwm);
}

// Interrupt Service Routine to increment the blue color
void inc_blue() {

float pwm;

// Read in current PWM value and increment it
 pwm = led_blue.read();
 pwm += 0.1f;

if (pwm > 1.0f) {
 pwm = 0.0f;
 }
 led_blue.write(pwm);
}

// Main loop
int main() {

// Initialize all LED colors as off
 led_red.write(0.0f);
 led_green.write(0.0f);
 led_blue.write(0.0f);

// Define three interrupts one for each color
 button_red.fall(&inc_red);

Page 15 of 85

 button_green.fall(&inc_green);
 button_blue.fall(&inc_blue);

// Do nothing! We wait for an interrupt to happen
while(1) {

 }
}

Run

Click the “Compile” button to download a binary file with your compiled
program. Copy that file to the LPC1768. You can choose to delete the
previous mbed_blinky_LPC1768.bin or just leave it there. If you have more
than one .bin file on the mbed when you press the restart button, the mbed
will choose the newest file to load and run.

Press the LPC1768’s restart button. You should be able to press any of the
3 buttons on your breadboard to increment the red, green, and blue
intensity of the LED. Note that when you reach the maximum brightness,
the intensity resets to 0.

Concepts

What is going on in our program? We should understand a few concepts
about our seemingly simple RGB LED and button program that are crucial
in embedded systems.

Pull-up Resistors

We use 10kΩ pull-up resistors to prevent shorting 3.3V to ground whenever
we push one of the buttons. Additionally, the pull-up resistors on the
microcontroller (LPC1768) pin holds the pin at 3.3V by default until the
button is pushed. Once pushed, the line is pulled down to ground, so the
pin goes from 3.3V to ground. We can use that falling edge (3.3V to 0V) to
trigger an interrupt within the microcontroller. To learn more about pull-up
resistors, see our tutorial here.

Functions

If you are not familiar with C syntax, you might want to brush up on some of
the basics.

In the above code, we created 3 functions: inc_red(), inc_green(), inc_blue
(). Functions generally perform some action when called, and replace the
much-maligned GOTO statement. They also allow us to re-use code
without having to copy-and-paste sections of code over and over again.

Each time we call one of the functions (e.g. inc_green()), the lines of code
within that function are called, and then the function exits, returning
program execution to just after the function call.

Notice that we placed the three functions above main(). When the compiler
looks at the code, it needs to have functions declared before they are used
in the code (within main() in this case).

Page 16 of 85

If you put main() before the functions, you would get a compiler error.
That’s because the compiler does not know what int_red(), etc. are when it
sees them in main(). Try it!

Objects

We are using C++ to write all of our programs. If you have never used C++
before, the syntax might appear a bit foreign. We recommend reading
about some basic C++ syntax first.

In the program, we create objects for each of our buttons and LEDs. For
example:

InterruptIn button_red(p5);

and

PwmOut led_red(p21);

button_red is an instance of class InterruptIn. Think of a class as a
“blueprint” that lets us create any number of instances (i.e. objects). Each
instance is tied to a variable (e.g. button_red). In this case, button_red is an
InterruptIn object.

Objects have special properties that let us call functions within that object
(called “member functions”) and manipulate data stored in the object (data
in objects is stored as “data members”). For example, we create a PwmOut
object named led_red. Later in the code, we call the member function
led_red.write(0.0f), which tells the led_red object to perform some action
(change the PWM of the associated pin in this case - see PWM below!).

We pass in the parameter p5 (a special variable known to the mbed
compiler - it points to the location of pin 5 in software) when we create an
InterruptIn object. This tells the mbed which pin to bind the interrupt to.

Now that we have created an InterruptIn object, we can call member
fucntions within that object. The InterruptIn class defines a fall() member
function, which allows us to set a function to be called whenever a HIGH-to-
LOW transition occurs on the pin (pin 5 in this case).

button_red.fall(&inc_red);

Note that the ‘&’ symbol is used to indicate the address of the inc_red
function.

Interrupts

Interrupts are an integral part of embedded systems and microcontrollers.
Most programs that you might be used to run sequentially, meaning that the
program executes each line in order (and jumps or loops where necessary).
In contrast, many microcontrollers rely on subroutines known as “Interrupt
Service Routines” to handle external and internal events.

In our mbed program, we “attach” an interrupt to our button pins and tie this
interrupt to a function call (e.g. inc_red()). The line

button_red.fall(&inc_red);

says that whenever we see a falling digital signal (i.e. from 3.3V to 0V), we
must stop whatever we were doing and execute the function inc_red(). This
is similar to callbacks often found in programming but can be tied to
external (i.e. outside the microcontroller) events.

YouTube user Patrick Hood-Daniel offers a great explanation of interrupts
and some example code in a different microcontroller (Atmel AVR
ATmega32):

Page 17 of 85

…

PWM

To control the brightness of the LEDs, we do not vary the current going into
the LED. Rather, we rapidly turn the LED off and on to give the appearance
of a dimmer LED. This is known as “Pulse-Width Modulation” (PWM). Note
that we are flipping the LED off and on so fast that generally our eyes
cannot see the flickering.

We adjust the “duty cycle” of this flipping process in order to control the
brightness. Duty cycle just refers to how long our LED stays on in relation to
how long it stays off.

The higher the duty cycle (e.g. 75% in the image above), the brighter the
LED will appear to be. At lower duty cycles (e.g. 25%) the LED will hardly
appear to be on. For a full tutorial on PWM, see Pulse-width Modulation.

In our rgb_buttons program, we use mbed’s built-in PwmOut object to
control PWM on several of the LPC1768 pins. We can read the PWM value
with the .read() method and set a new PWM value with .write(). We use a
floating point number to specify the duty cycle. This can be between 0.0
(0% duty cycle) to 1.0 (100% duty cycle).

Going Further

We’ve covered three important concepts in this tutorial: user input with
buttons (using pull-up resistors), interrupts, and PWM. If these topics
provide some confusion, feel free to read through the “Digging Deeper”
section to learn more about these topics in greater detail.

Beyond the Tutorial

• See how the LED changes when you press a button down? Can you
make it so that the LED changes when you release a button?

• Since we are using interrupts, our while(1){} loop is empty. Make
something happen while waiting for a button push! For example,
flash another LED in that while loop.

Page 18 of 85

mbed Starter Kit - Part 3: Graphic LCD SparkFun Wish List

• Can you re-create the functionality of the program without using any
interrupts?

• You might notice that the LED changes accidentally sometimes when
you release a button. This is caused by a phenomenon known as
contact bounce. Can you create a way to remove contact bounce
(known as “debouncing”)? This can be done in hardware or software.

Digging Deeper

• If you are not familiar with C++, you may want to read up on Object
Oriented Programming

• It might also be a good idea to brush up on C syntax and C++ syntax
• Read about pull-up resistors
• Read about embedded interrupts and about mbed’s interrupt

handling
• Read about pulse-width modulation and about how mbed built-in

PWM features

Experiment 3: Graphic LCD
Let’s make some graphics! In this tutorial, we walk you through connecting
your Serial Miniature Graphic LCD to the mbed LPC1768 and making some
shapes and text. This tutorial is important as we will use the LCD in the next
few tutorials, so pay close attention!

Suggested Reading

• Serial Communication

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Serial Miniature LCD Module - 1.44" (uLCD-144-G2 GFX)
LCD-11377

The µLCD-144-G2(GFX) is a compact and cost effective display mod…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

Page 19 of 85

If you need to knock up a quick prototype there's nothing like having a…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Schematic

Click on schematic to view larger image.

Connections

Before connecting the LCD to your breadboard, we recommend you
carefully bend the 3.3V pin on the LCD back so that it does not short to the
RESET pin. This can be accomplished with a set of needle nose pliers. You
will likely never need 3.3V from the LCD, as you can get 3.3V from the
VOUT pin on the LPC1768. The other pins in the second row can be
shorted to pins in the first row and not affect the LCD’s operation.

Plug the LCD into your breadboard and connect it to the LPC1768 as
shown.

Fritzing Diagram

Hookup Table

Place the LPC1768 in a breadboard with pin VOUT in position i1 and pin 20
in position b20.

Connect the rest of the components as follows:

Component Breadboard

Page 20 of 85

uLCD-144-
G2*

h26
(RES)

h27
(GND)

h28
(RX)

h29
(TX)

h30
(+5V)

Jumper Wire j2 f30

Jumper Wire a1 (-)

Jumper Wire a9 f28

Jumper Wire a10 f29

Jumper Wire a11 f26

Jumper Wire (-) f27

* Pins not listed are not used.

The Code

For this tutorial, we will be using an mbed library. Libraries can be found
under the Handbook for official, mbed-supported libraries or the Cookbook
for user-created mbed libraries.

Libraries

mbed.org user Jim Hamblen modified a 4D LCD library to work with our
uLCD-144-G2. We copied (also known as “forked”) his library for use in this
tutorial.

Go to mbed.org and sign in to your account.

Navigate to the mbed 4DGL-uLCD-SE library page.

Click “Import this library” on the right side of the page. You will be brought
to the mbed Compiler and asked to import the library. Fill in a program
name (e.g. “ulcd_demo”) for “New Program” and click “Import.”

Since the import process imported only the 4DGL-uLCD-SE library, we

Page 21 of 85

need to add the mbed library.

In the Compiler, right-click on the “ulcd_demo” project, highlight “Import
Library…” and select “From Import Wizard…”

That will bring you to the Import Wizard page. In the “Search criteria…” on
the right type in “mbed” and click the “Search” button (Note: the mbed
library is likely already listed, but it is good practice to know how to search
for libraries).

The mbed library should be the first listing.

Double-click the entry (highlighted in the picture) to import the library. This
will automatically load the library into your “ulcd_demo” project.

Program

With our libraries loaded, we can create our LCD program. Create a new
file in our project by right-clicking on the “ulcd_demo” project in the left pane
and selecting “New File…”

Page 22 of 85

You will be prompted to name your new file. Call it “main.cpp” and click the
“OK” button.

The Compiler will automatically open the new main.cpp in the workspace.

Enter the following code so that we can test out our 4D serial LCD.

Page 23 of 85

// Demo for the uLCD144G2 based on the work by Jim Hamblen

#include "mbed.h"
#include "uLCD_4DGL.h"

// TX, RX, and RES pins
uLCD_4DGL uLCD(p9,p10,p11);

int main() {

int x;
int y;
int radius;
int vx;

// Set our UART baudrate to something reasonable
 uLCD.baudrate(115200);

// Change background color (must be called before cls)
 uLCD.background_color(WHITE);

// Clear screen with background color
 uLCD.cls();

// Change background color of text
 uLCD.textbackground_color(WHITE);

// Make some colorful text
 uLCD.locate(4, 1); // Move cursor
 uLCD.color(BLUE);
 uLCD.printf("This is a\n");
 uLCD.locate(5, 3); // Move cursor
 uLCD.text_width(2); // 2x normal size
 uLCD.text_height(2); // 2x normal size
 uLCD.color(RED); // Change text color
 uLCD.printf("TEST");
 uLCD.text_width(1); // Normal size
 uLCD.text_height(1); // Normal size
 uLCD.locate(3, 6); // Move cursor
 uLCD.color(BLACK); // Change text color
 uLCD.printf("of my new LCD");

// Initial parameters for the circle
 x = 50;
 y = 100;
 radius = 4;
 vx = 1;

// Make a ball bounce back and forth
while (1) {

// Draw a dark green
 uLCD.filled_circle(x, y, radius, 0x008000);

// Bounce off the edges
if ((x <= radius + 1) || (x >= 126 radius)) {

 vx = 1 * vx;
 }

// Wait before erasing old circle
wait(0.02); // In seconds

// Erase old circle
 uLCD.filled_circle(x, y, radius, WHITE);

Page 24 of 85

// Move circle
 x = x + vx;
 }
}

Run

Compile the program and copy the downloaded file to the mbed. Press the
mbed’s restart button to see the LCD come to life with your program!

Concepts

We touched on a few important concepts in this tutorial that you may want
to understand.

Serial Communications

To communicate between the mbed and the LCD, we are relying on a
protocol known as UART. While you can create a program that emulates
UART, it is far easier to rely on the mbed’s built-in UART hardware
peripherals. We are using pin 9 and pin 10, which are the TX and RX lines,
respectively, of one of the LPC1768’s UART peripherals. To read more
about UART and serial communications, see this tutorial.

Libraries

Many software programs rely on “libraries.” A library is a separate program
or programs that may be called upon to perform one or several functions.
We interface with libraries by linking to them in our project (the “Import” step
in the mbed Compiler) and using the “#include” command in our main
program. This tells the compiler to include the header file (“.h”), which
makes functions in the library available to us (e.g. the uLCD_4DGL class
and methods, such as background_color()). Many mbed libraries can be
found in the Handbook and the Cookbook.

For this guide, we are using forked tutorials so that the versions stay the
same. When you start making projects on your own, we highly recommend
using libraries from the original author (or write your own!). As you start
developing projects using other people’s libraries, you’ll notice that they
might update their library from time to time. If you see a little green circular
arrow around the library icon in your project, that means the library has
been updated. To update the library to the latest revision, right-click on the
library in your project viewer and select “Update…”

Page 25 of 85

The Super Loop

Many simple embedded systems use the concept of “setup” and
“loop” (more powerful embedded systems often use a Real-Time Operating
System). For these tutorials, we rely on setting up some parameters and
then looping forever within a while loop. This type of structure is known as a
super loop architecture.

For mbed, the super loop architecture looks like:

int main() {

// Setup code goes here

while (1) {

// Loop forever code goes here

 }
}

We can declare functions outside of main, which can be called within either
our setup or loop code. Additionally, we can declare variables outside of
main (and other functions), which are known as “global variables”.

This super loop template is a great starting place for many simple
embedded programs.

Graphics

The realm of computer graphics is vast. We only touched on the beginning
with simple text and shapes. Even if we do not go in-depth into graphics,
we recommend you familiarize yourself with some graphics terms such as
framebuffer, frame rate, and refresh rate.

Going Further

Now that you have learned about libraries and graphical displays, you are
well on your way to becoming an mbed expert. We will be using the LCD in
the coming tutorials, so don’t disconnect it yet!

Beyond the Tutorial

• Can you make the circle bounce up and down as well as side to
side?

• Can you make the circle grow and shrink in size?
• Can you make the circle speed up and slow down?
• Can you make the text move around the screen?
• Can you make a scrolling text marquee? (Hint: Look at how we

create text and how we move objects around the screen)
• Can you draw a rectangle instead of a circle? (Hint: see Jim

Hamblen’s Demo Code)

Digging Deeper

Page 26 of 85

mbed Starter Kit - Part 4: Accelerometer SparkFun Wish List

• Read more about UART and Serial Communications as well as
mbed’s Serial library

• Learn about the history of computer graphics
• Try out Jim Hamblen’s other uLCD-144-G2 demo program. Can you

get video to play on your LCD?

Experiment 4: Accelerometer
Using the graphic LCD from the previous tutorial, we will connect a sensor
to add an interactive component to our project. We can use an MMA8452Q
3-axis accelerometer to move a ball around the screen for a cool demo.

Suggested Reading

• I2C
• Accelerometer Basics

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
accelerometer's breakout board.

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Serial Miniature LCD Module - 1.44" (uLCD-144-G2 GFX)
LCD-11377

The µLCD-144-G2(GFX) is a compact and cost effective display mod…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Page 27 of 85

SparkFun Triple Axis Accelerometer Breakout - MMA8452Q
SEN-12756

This breakout board makes it easy to use the tiny MMA8452Q acceler…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

Schematic

Click on schematic to view larger image.

Connections

Connect the LPC1768 to the LCD and accelerometer in the following
fashion. Note that the LCD uses the same connections as in Part 3.

Fritzing Diagram

Hookup Table

Place the LPC1768 in a breadboard with pin VOUT in position i1 and pin 20
in position b20.

Connect the rest of the components as follows:

Component Breadboard

uLCD-144-
G2*

h26
(RES)

h27
(GND)

h28
(RX)

h29 (TX) h30
(+5V)

MMA8452* b25
(GND)

b28
(SCL)

b29
(SDA)

b30
(3.3V)

Jumper Wire j2 f30

Jumper Wire a1 (-)

Jumper Wire a9 f28

Jumper Wire a10 f29

Jumper Wire a11 f26

Jumper Wire (-) f27

Jumper Wire (-) d25

Page 28 of 85

Jumper Wire j14 d28

Jumper Wire j13 d29

Jumper Wire j1 d30

* Pins not listed are not used.

The Code

We will be building on the previous tutorial. In addition to importing an mbed
library from the Cookbook for the LCD, we will be building our own library
for the MMA8452Q accelerometer.

Libraries

Navigate to the developer.mbed.org, login, and navigate to your Compiler.

Right-click on “My Programs” and create a new program.

Give your program an appropriate name (such as “ulcd_accel”), keep the
Template as “Blinky LED Hello World,” and click OK.

Navigate to the 4DGL-uLCD-SE library page.

Page 29 of 85

Click “Import this library” on the right side of the page. You will be brought
to the mbed Compiler and asked to import the library. For “Target Path,”
select our “ulcd_accel” project and click “Import.”

The library should now appear under our project in the Program
Workspace.

Now, we get to create our own library! Right-click on the program in the left
pane and select “New Library…”

Page 30 of 85

Name your library “MMA8452Q” and click OK.

Right-click on the newly created library and select “New File…”

Name your new file “MMA8452Q.h” and click OK.

Page 31 of 85

Repeat the same file creation process to make another file:
“MMA8452Q.cpp”. Your project folder should contain a main.cpp, the mbed
library, the 4DGL-uLCD-SE library, and our newly created MMA8452Q
library (with our blank .h and .cpp files).

Click on the “MMA8452Q.h” file to open up the blank header (.h) file. Copy
the following code into the file.

Page 32 of 85

// Library for our MMA8452Q 3axis accelerometer
// Based on the MMA8452Q Arduino Library by Jim Lindblom (Spar
kFun Electronics)

#ifndef MMA8452Q_H
#define MMA8452Q_H

#include "mbed.h"

// Register definitions
#define REG_STATUS 0x00
#define OUT_X_MSB 0x01
#define OUT_X_LSB 0x02
#define OUT_Y_MSB 0x03
#define OUT_Y_LSB 0x04
#define OUT_Z_MSB 0x05
#define OUT_Z_LSB 0x06
#define REG_WHO_AM_I 0x0D
#define REG_XYZ_DATA_CFG 0x0E
#define REG_CTRL_REG1 0x2A

// WHO_AM_I check
#define FACTORY_ID 0x2A

// Scale definitions
#define SCALE_2G 2
#define SCALE_4G 4
#define SCALE_8G 8

// Data rates
#define ODR_800HZ 0
#define ODR_400HZ 1
#define ODR_200HZ 2
#define ODR_100HZ 3
#define ODR_50HZ 4
#define ODR_12_5HZ 5
#define ODR_6_25HZ 6
#define ODR_1_56HZ 7

// Init values
#define DEFAULT_FSR SCALE_2G
#define DEFAULT_ODR ODR_800HZ

// Class declaration
class MMA8452Q
{

public:
MMA8452Q(PinName sda, PinName scl, int addr);

 ~MMA8452Q();
bool init();

 uint8_t available();
void setScale(uint8_t fsr);
void setODR(uint8_t odr);
void standby();
void active();
float readX();
float readY();
float readZ();

 uint8_t readRegister(uint8_t reg);
void writeRegister(uint8_t reg, uint8_t data);

private:
 I2C m_i2c;

Page 33 of 85

int m_addr;
int scale;

};

#endif

Click “Save”. Note that since we are not compiling our library files right
away, we want to save them so we can work on other files. That way, if we
lose power or accidentally close our browser, we won’t lose our work (don’t
worry, our library files will get compiled later). Save often!

Click on “MMA8452Q.cpp” to open the blank program (.cpp) file. Copy the
following code into the file.

Page 34 of 85

// Library for our MMA8452Q 3axis accelerometer
// Based on the MMA8452Q Arduino Library by Jim Lindblom (Spar
kFun Electronics)

#include "mbed.h"
#include "MMA8452Q.h"

// Constructor
MMA8452Q::MMA8452Q(PinName sda, PinName scl, int addr) : m_i2c
(sda, scl), m_addr(addr)
{

// Initialize members
 scale = DEFAULT_FSR;
}

// Destructor
MMA8452Q::~MMA8452Q()
{

}

// Initialization
bool MMA8452Q::init()
{

// Check to make sure the chip's ID matches the factory ID
 uint8_t c = readRegister(REG_WHO_AM_I);

if(c != FACTORY_ID) {
return false;

 }

// Set default scale and data rate
standby();
setScale(DEFAULT_FSR);
setODR(DEFAULT_ODR);
active();

return true;
}

// Set the fullscale range for x, y, and z data
void MMA8452Q::setScale(uint8_t fsr)
{
 uint8_t config = readRegister(REG_XYZ_DATA_CFG);
 scale = fsr;
 config &= 0xFC; // Mask out FSR bits
 fsr = fsr >> 2; // Trick to translate
scale to FSR bits
 fsr &= 0x03; // Mask out acceptabl
e FSRs
 config |= fsr; // Write FSR bits to c
onfig byte

writeRegister(REG_XYZ_DATA_CFG, config); // W
rite config back to register
}

// Set the Output Data Rate
void MMA8452Q::setODR(uint8_t odr)
{
 uint8_t ctrl = readRegister(REG_CTRL_REG1);
 ctrl &= 0xCF; // Mask out data rate
bits
 odr &= 0x07; // Mask out acceptabl
e ODRs
 ctrl |= (odr << 3); // Write ODR bits to c

Page 35 of 85

ontrol byte
writeRegister(REG_CTRL_REG1, ctrl); // Write control back

to register
}

// Set accelerometer into standby mode
void MMA8452Q::standby()
{
 uint8_t c = readRegister(REG_CTRL_REG1);
 c &= ~(0x01); // Clear bit 0 to go i
nto standby

writeRegister(REG_CTRL_REG1, c); // Write back to CONTR
OL register
}

// Set accelerometer into active mode
void MMA8452Q::active()
{
 uint8_t c = readRegister(REG_CTRL_REG1);
 c |= 0x01; // Set bit 0 to go int
o active mode

writeRegister(REG_CTRL_REG1, c); // Write back to CONTR
OL register
}

// Read X registers
float MMA8452Q::readX()
{
 int16_t x = 0;

float cx = 0;

// Read MSB and LSB from X registers
 x = readRegister(OUT_X_MSB);
 x = x << 8;
 x |= readRegister(OUT_X_LSB);
 x = x >> 4;

// Calculate human readable X
 cx = (float)x / (float)2048 * (float)(scale);

return cx;
}

// Read Y registers
float MMA8452Q::readY()
{
 int16_t y = 0;

float cy = 0;

// Read MSB and LSB from Y registers
 y = readRegister(OUT_Y_MSB);
 y = y << 8;
 y |= readRegister(OUT_Y_LSB);
 y = y >> 4;

// Calculate human readable Y
 cy = (float)y / (float)2048 * (float)(scale);

return cy;
}

// Read Z registers
float MMA8452Q::readZ()
{
 int16_t z = 0;

Page 36 of 85

float cz = 0;

// Read MSB and LSB from Z registers
 z = readRegister(OUT_Z_MSB);
 z = z << 8;
 z |= readRegister(OUT_Z_LSB);
 z = z >> 4;

// Calculate human readable Z
 cz = (float)z / (float)2048 * (float)(scale);

return cz;
}

// Raw read register over I2C
uint8_t MMA8452Q::readRegister(uint8_t reg)
{
 uint8_t dev_addr;
 uint8_t data;

// I2C address are bits [6..1] in the transmitted byte, s
o we shift by 1
 dev_addr = m_addr << 1;

// Write device address with a trailing 'write' bit
 m_i2c.start();
 m_i2c.write(dev_addr & 0xFE);

// Write register address
 m_i2c.write(reg);

// Write a start bit and device address with a trailing 'r
ead' bit
 m_i2c.start();
 m_i2c.write(dev_addr | 0x01);

// Read single byte from I2C device
 data = m_i2c.read(0);
 m_i2c.stop();

return data;
}

// Raw write data to a register over I2C
void MMA8452Q::writeRegister(uint8_t reg, uint8_t data)
{
 uint8_t dev_addr;

// I2C address are bits [6..1] in the transmitted byte, s
o we shift by 1
 dev_addr = m_addr << 1;

// Write device address with a trailing 'write' bit
 m_i2c.start();
 m_i2c.write(dev_addr & 0xFE);

// Write register address
 m_i2c.write(reg);

// Write the data to the register
 m_i2c.write(data);
 m_i2c.stop();
}

Click “Save”.

Page 37 of 85

And that’s it! We just created our very first library in mbed. Because the
library is contained within our project, everything is automatically linked at
compile time. We just need to write #include “MMA8452Q.h” in our main
program to use the MMA8452Q accerlerometer functions.

Program

Click on “main.cpp” under our “ulcd-accel” project to open up our main
program file. Because we selected the “Blinky” template, there will be some
code in the file already. Go ahead and delete everything in “main.cpp”.
Copy and paste in the following code.

Page 38 of 85

// Demo for the uLCD144G2 and MMA8452Q 3axis accelerometer

#include "mbed.h"
#include "MMA8452Q.h"
#include "uLCD_4DGL.h"

// Graphic LCD TX, RX, and RES pins
uLCD_4DGL uLCD(p9,p10,p11);

// Accelerometer SDA, SCL, and I2C address
MMA8452Q accel(p28, p27, 0x1D);

int main() {

// Initialize uLCD
 uLCD.baudrate(115200);
 uLCD.background_color(BLACK);
 uLCD.cls();

// Initialize accelerometer
 accel.init();

// Initial parameters for the circle
float x = 64;
float y = 64;
int radius = 4;
int speed = 4;

// Make a ball "fall" in direction of accelerometer
while (1) {

// Draw a red circle
 uLCD.filled_circle((int)x, (int)y, radius, RED);

// Wait before erasing old circle
wait(0.02); // In seconds

// Erase old circle
 uLCD.filled_circle((int)x, (int)y, radius, BLACK);

// Move circle. IMPORTANT! Notice how we adjust for se
nsor orientation!
 x = (speed * accel.readY());
 y = (speed * accel.readX());

// Make circle sit on edges
if (x <= radius + 1) {

 x = radius + 1;
 } else if (x >= 126 radius) {
 x = 126 radius;
 }

if (y <= radius + 1) {
 y = radius + 1;
 } else if (y >= 126 radius) {
 y = 126 radius;
 }
 }
}

Run

Compile the program and copy the downloaded file to the mbed. Press the
mbed’s restart button to see the LCD display a little red ball. Pick up the
breadboard and tilt it in different directions. You should see the ball start to
move around!

Page 39 of 85

Concepts

We touched on a few important concepts in this tutorial that you may want
to understand.

I2C

I2C (or “Inter-Integrated Circuit”) is a communications protocol built by
Philips in the 1980s. As I2C is a bus protocol, it allows for multiple masters
and multiple devices to reside on the same bus and relies on addresses to
communicate to specific devices. In our example, we used mbed’s I2C
library to talk to the accelerometer. To read more about the history of I2C,
see this Wikipedia article.

Libraries

In the last tutorial, we imported an existing library. In this tutorial, we
created a new library to make accessing the accelerometer easier. If you
feel that you have a solid, well documented library that you want to share
with others, read through mbed’s Collaboration guide and specifically, how
to write and publish a library.

Header Files

When we made our library, we created two files: a .h file and a .cpp file.
The .h file is known as a header file. The header file contains declarations
(variables, functions, classes, etc.) for other files in the program to use.

In our main file (main.cpp), we include all of the declarations from the
header file (MMA8452Q.h) with the statement

#include "MMA8452Q.h"

This, in effect, copies everything from the header file to the #include line.

You will also notice that we included the same header file in the
MMA8452Q.cpp file. We declare all of our classes, functions, and variables
in the header file and define them in the .cpp file (read about the difference
between declare and define).

When we compile our program, the compiler sees that we have declared
the MMA8452Q class in the included header file, so we can use it in our
main program. It will also compile the MMA8452Q.cpp file into an object
file.

During the linking phase, the object files are combined into a single
executable that is downloaded to your computer as a .bin file.

Floating Point

If you are carefully reviewing the example code, you might have noticed the
keyword “float.” If you have never dealt with floating point numbers, you
might want to read up on how they work. Kip Irvine provides a great floating
point tutorial. If you are interested in the history of floating point, see this
Wikipedia article.

Page 40 of 85

Going Further

We made an accelerometer do some cool stuff on a graphical display. If
you are following the tutorials in order, you will need the LCD for one more!

Beyond the Tutorial

• Can you make a digital bubble level? (Hint: think about how a bubble
works and adjust how we move the circle)

• Can you make the ball bounce off the sides? (Hint: look at how we
make the ball “sit on edges” and make it bounce instead)

• Can you make a basic ball-in-a-maze game? (Hint: look at how we
draw shapes with the LCD library and how to make the ball sit on
edges)

Digging Deeper

• Official I2C Primer
• Read the actual I2C Specification (if you’re looking for a cure for

insomnia)
• Look into how someone else did an MMA8452 library

Experiment 5: Internet Clock
With the graphic LCD still connected, we hook up an Ethernet jack to our
mbed to get it on the Internet. We will use the Network Time Protocol (NTP)
to fetch the current time (in UTC/GMT) and display it on the LCD.

IMPORTANT: You will need access to an Internet-connected router with an
open Ethernet port for this tutorial.

Suggested Reading

• Ethernet
• NTP

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
RJ45 MagJack's breakout board.

Page 41 of 85

mbed Starter Kit - Part 5: Internet Clock SparkFun Wish List

SparkFun RJ45 MagJack Breakout
BOB-13021

This is the SparkFun RJ45 MagJack Breakout, a simple board that wil…

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Serial Miniature LCD Module - 1.44" (uLCD-144-G2 GFX)
LCD-11377

The µLCD-144-G2(GFX) is a compact and cost effective display mod…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

(2) Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

CAT 6 Cable - 3ft
CAB-08915

This 3ft Category 6 (CAT 6) Ethernet cable is the solution to your inter…

Schematic

Click on schematic to view larger image.

Connections

Connect the LPC1768 to the LCD and Ethernet jack in the following
fashion. Note that the LCD uses the same connections as in Part 3.

Fritzing Diagram

Hookup Table

Page 42 of 85

Place the LPC1768 in the first breadboard with pin VOUT in position i1 and
pin 20 in position b20.

Connect the rest of the components as follows:

Component Breadboard 1 Breadboard 2

uLCD-144-
G2*

h26
(RES)

h27
(GND)

h28
(RX)

h29
(TX)

h30
(+5V)

RJ45
MagJack
Breakout*

c9
(P1)

c10
(P2)

c15
(P7)

c16
(P8)

Jumper
Wire

j2 f30

Jumper
Wire

a1 (-)

Jumper
Wire

a9 f28

Jumper
Wire

a10 f29

Jumper
Wire

a11 f26

Jumper
Wire

(-) f27

Jumper
Wire

j5 e16

Jumper
Wire

j6 e15

Jumper
Wire

j7 e10

Jumper
Wire

j8 e9

* Pins not listed are not used.

The Code

We will be relying heavily on pre-built libraries for this project. We need the
same LCD library from the previous two tutorials as well as mbed’s
Ethernet and NTP libraries.

Libraries

Navigate to the mbed.org, login, and navigate to your Compiler.

Create a new program with the “Blinky LED Hello World” template. Name it
something like “internet_clock.”

Navigate to the following pages and import each library into your
“internet_clock” program.

• 4DGL-uLCD-SE
• EthernetInterface

Page 43 of 85

• mbed-rtos
• NTPClient

The mbed library should already be imported if you used the “Blinky”
template.

Program

Click on “main.cpp” in your project, remove the template code, and copy in
the following code.

Page 44 of 85

// Internet Clock with LCD based on the work by Jim Hamblen an
d Tyler Lisowski

#include "mbed.h"
#include "EthernetInterface.h"
#include "NTPClient.h"
#include "uLCD_4DGL.h"

// Parameters
char* domain_name = "0.uk.pool.ntp.org";
int port_number = 123;

// Networking
EthernetInterface eth;
NTPClient ntp_client;

// Graphic LCD TX, RX, and RES pins
uLCD_4DGL uLCD(p9,p10,p11);

int main() {

 time_t ct_time;
char time_buffer[80];

// Initialize LCD
 uLCD.baudrate(115200);
 uLCD.background_color(BLACK);
 uLCD.cls();

// Connect to network and wait for DHCP
 uLCD.locate(0,0);
 uLCD.printf("Getting IP Address\n");
 eth.init();

if (eth.connect() == 1) {
 uLCD.printf("ERROR: Could not\nget IP address");

return 1;
 }
 uLCD.printf("IP address is \n%s\n\n",eth.getIPAddress());

wait(1);

// Read time from server
 uLCD.printf("Reading time...\n\r");
 ntp_client.setTime(domain_name, port_number);
 uLCD.printf("Time set\n");

wait(2);
 eth.disconnect();

// Reset LCD
 uLCD.background_color(WHITE);
 uLCD.textbackground_color(WHITE);
 uLCD.color(RED);
 uLCD.cls();
 uLCD.text_height(2);

// Loop and update clock
while (1) {

 uLCD.locate(0, 1);
 ct_time = time(NULL);

strftime(time_buffer, 80, " %a %b %d\n %T %p %z
\n %Z\n", \

localtime(&ct_
time));
 uLCD.printf(" UTC/GMT:\n%s", time_buffer);

wait(0.1);

Page 45 of 85

 }
}

Run

Compile the program and copy the downloaded file to the mbed. Connect
the Ethernet cable from an Internet-connected router/switch/hub to your
project’s MagJack breakout. Press the mbed’s restart button, and you
should see the LCD come to life with connection details. After a few
seconds, the LCD should change to show the current time (in UTC/GMT
format).

Concepts

Connecting something to the Internet opens up a whole new world. There is
a lot going on to communicate to a remote server, so we recommend
looking into a few concepts to familiarize yourself with how the Internet
works.

OSI Model

Ethernet is just one small component in making devices talk over the
Internet. Many protocols make up Internet communications and can be
thought of like an onion. Each protocol layer corresponds to a layer within
the onion, with your custom message (in this case, a request for time using
NTP) in the middle. Several other layers are stacked on top of your
message in order to make the communications through the Internet work. If
you would like to understand how these protocols work, start with the
7-layer Open Systems Interconnection (OSI) model.

TCP and UDP

TCP and UDP are the two most important Transport Layer protocols.
Transmission Control Protocol (TCP) is mostly used by services that
require a guaranteed delivery, such as websites and email. On the other
hand, we were using the User Datagram Protocol (UDP) to send and
receive time information with NTP.

Application Layer Protocols

Luckily, the mbed handles most of the protocols for us, with the help of
some libraries. When we are writing applications in the mbed (or any
system), we are mostly concerned with the application layer to make
devices talk to each other (as the lower levels are already implemented for
us). In this tutorial, we relied on the Network Time Protocol (NTP) to talk to
a time server on the Internet. When it comes to programming embedded
devices, the Dynamic Host Configuration Protocol (DHCP), the Hypertext
Transfer Protocol (HTTP), and the File Transfer Protocol (FTP) are also
important.

Timekeeping

Embedded systems have several methods to keeping time. The two most
popular ways are counting clock cycles and using a real-time clock (RTC).

Page 46 of 85

If we know the frequency of the processor’s clock, then we can calculate
how many clock cycles we need to wait if we want to delay by a certain
amount of time. For example, if we have a 100MHz clock, we know that a
cycle happens every 0.01 microseconds (1 / 100MHz = 0.01
microseconds). If we want to delay 20 milliseconds, then we would have the
processor do nothing for 2,000,000 cycles (0.01 microseconds x 2,000,000
= 20,000 microseconds = 20 milliseconds).

These delay functions have been wrapped up for you with mbed. To delay
for a number of seconds, use wait(). The other two functions, wait_ms() and
wait_us(), allow you to delay by a number of milliseconds and
microseconds, respectively.

Unfortunately, waiting by cycles is often not precise. Your clock speed may
be slightly off (thanks to things like temperature), or your wait() function
might be interrupted by other code, which would throw off your ability to
count exactly how much time has passed. Fortunately, there is a piece of
hardware that can keep time much more accurately: the real-time clock.

RTCs are often a separate chip with its own clock that has the sole purpose
of keeping track of time. Many times (such as in the case of your
computer), the RTC will have a small battery attached so that it will
remember the time even when you turn off your computer.

Luckily for us, the mbed has an RTC already built in to its circuitry. The
mbed library handles talking to the RTC module so we can set and read the
time. We call set_time() to set the current time on the RTC and localtime()
to read the time. Note that in the Internet Clock example, we use setTime(),
a method in NTPClient, to set the RTC time. We then use localtime() to
retrieve the time.

To read more about real-time clocks, see this article.

Going Further

By connecting our mbed to the Internet, we opened up many new
possibilities. We won’t continue with the Internet in this tutorial series, but
feel free to try out some of the suggested projects in “Beyond the Tutorial”
to learn more about making devices talk to each other!

Beyond the Tutorial

• Adjust the clock to your timezone
• Display your current location using IP-based geolocation (Hint: read

this article)
• Using HTTP, can you download the contents of a website and

display the HTML on your LCD? (Hint: see the HTTPClient library)
• Make a feed on data.sparkfun.com and push some data to it (Hint:

see this guide on pushing data to data.sparkfun)
• Try running an HTTP Server on the mbed

Digging Deeper

• The History of the Internet
• The actual HTTP Specification
• Read about the Internet of Things

Experiment 6: USB Host and Threading
In this tutorial, we turn the mbed LPC1768 into a USB host. For this, we will
use mbed’s USBHost library and the USB Type A Female Breakout. Leave
the LCD connected, as we will use it to display characters from a USB
keyboard. Additionally, we introduce the concept of threading so that we
can essentially do 2 things at once (specifically, listen for keystrokes and
blink an LED).

Page 47 of 85

mbed Starter Kit - Part 6: USB Host and Threading SparkFun

Wish List

IMPORTANT: You will need a USB keyboard for this tutorial.

Suggested Reading

• USB Overview
• Multithreading

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
USB's breakout board.

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Serial Miniature LCD Module - 1.44" (uLCD-144-G2 GFX)
LCD-11377

The µLCD-144-G2(GFX) is a compact and cost effective display mod…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

SparkFun USB Type A Female Breakout
BOB-12700

This simple board breaks out a female USB type A connector's VCC,…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

In addition to the listed parts, you will also need a USB keyboard to
complete the tutorial.

Page 48 of 85

Schematic

Click on schematic to view larger image.

Connections

Connect the LPC1768 to the LCD and USB breakout in the following
fashion. Note that the LCD uses the same connections as in Part 3.

Fritzing Diagram

Hookup Table

Place the LPC1768 in a breadboard with pin VOUT in position i1 and pin 20
in position b20.

Connect the rest of the components as follows:

Component Breadboard

uLCD-144-G2* h26
(RES)

h27
(GND)

h28
(RX)

h29
(TX)

h30
(+5V)

USB Type A
Female Breakout

b26
(VCC)

b27 (D-) b28
(D+)

b29
(GND)

Jumper Wire j2 d26

Jumper Wire e26 f30

Jumper Wire a1 (-)

Jumper Wire a9 f28

Jumper Wire a10 f29

Jumper Wire a11 f26

Jumper Wire (-) f27

Jumper Wire j9 e27

Jumper Wire j10 e28

Jumper Wire (-) e29

Page 49 of 85

* Pins not listed are not used.

The Code

For this tutorial, we will be using the LCD and USB Host libraries. In our
main.cpp, we create a thread that runs the USB Host function separately
from the rest of the program. This allows us to blink an LED and have it not
interrupt or be interrupted by keyboard input.

Libraries

Navigate to the mbed.org, login, and navigate to your Compiler.

Create a new program with the “Blinky LED Hello World” template. Name it
something like “usb_host.”

Navigate to the following pages and import each library into your “usb_host”
program.

• 4DGL-uLCD-SE
• USBHost

The mbed library should already be imported if you used the “Blinky”
template.

Program

Click on “main.cpp” in your project, remove the template code, and copy in
the following code.

Page 50 of 85

// USB host keyboard and LCD demo

#include "mbed.h"
#include "USBHostKeyboard.h"
#include "uLCD_4DGL.h"

// LED to demonstrate multithreading
DigitalOut led(LED1);

// Graphic LCD TX, RX, and RES pins
uLCD_4DGL uLCD(p9,p10,p11);

// Callback function from thread
void onKey(uint8_t key) {
 uLCD.printf("%c", key);
}

// Function that runs continuously in the thread
void keyboard_task(void const *) {

 USBHostKeyboard keyboard;

while(1) {

// Try to connect a USB keyboard
 uLCD.printf("Waiting...\n");

while(!keyboard.connect()) {
 Thread::wait(500);
 }
 uLCD.printf("Connected!\n");

// When connected, attach handler called on keyboard e
vent
 keyboard.attach(onKey);

// Wait until the keyboard is disconnected
while(keyboard.connected()) {

 Thread::wait(500);
 }
 uLCD.printf("\nDisconnected!\n");
 }
}

// Main the program enters here
int main() {

// Initialize LCD
 uLCD.baudrate(115200);
 uLCD.background_color(BLACK);
 uLCD.cls();
 uLCD.locate(0,0);

// Create a thread that runs a function (keyboard_task)
 Thread keyboardTask(keyboard_task, NULL, osPriorityNorma
l, 256 * 4);

// Flash an LED forever
while(1) {

 led=!led;
 Thread::wait(500);
 }
}

Run

Page 51 of 85

Compile the program and copy the downloaded file to the mbed. Connect a
USB keyboard to the USB breakout board.

Press the mbed’s restart button, and the LCD should show “Waiting…” If
the keyboard was connected properly, you should see “Connected” on the
LCD. Once you see “Connected,” start typing! You will see your keystrokes
appear on the LCD.

NOTE #1: If you have some trouble getting the keyboard to connect, make
sure the keyboard is plugged in and try resetting the mbed.

NOTE #2: The USBHost library is in beta and has some issues connecting
USB devices sometimes. Not all keyboards will work with this demo.

Also, if you try typing too fast, you will see repeat keys. This is because the
mbed does not process two simultaneous key presses correctly.

Concepts

We covered two important concepts in this tutorial: USB and threading.
Both create a unique set of opportunities for embedded systems.

Callbacks

In our program, we define an onKey() function. This is a callback.

onKey(uint8_t key) is a function that is declared in the USBHostKeyboard
library, but the definition is left to us to implement. Callbacks are executed
whenever an event occurs in another piece of code (within the
USBHostKeyboard code, in this case).

We define onKey() in our code (it prints the received character to the LCD),
and then we pass the onKey() function to our USBHostKeyboard object
with the following line:

keyboard.attach(onKey);

This lets the USBHostKeyboard object know where to find the onKey()
callback function. After that, whenever a keystroke occurs on the connected
keyboard, the onKey() function is called.

USB Host

Page 52 of 85

Universal Serial Bus (USB) has been around for many years. Created in the
mid-1990s, USB has been the most popular way to connect peripherals to
computers. As a result, many embedded systems support USB
communications.

While many embedded systems can support being a USB Device, having
USB Host capabilities is only seen in more powerful processors. Being able
to act as a host means that we can plug in a number of devices normally
reserved for computers: keyboards, mice, flash drives, etc. If you really
want to get involved in USB development, this book is a great place to start.

Threading

If you are carefully reviewing the code, you might have noticed the keyword
“Thread” appear. This is a function built into the mbed library that allows us
to run multiple processes at the same time (well, not quite. The processor
relies on a technique called Scheduling to determine which process gets
run, since only one can run at a time in reality). It is important to understand
that our mbed is powerful enough to allow us to run multiple threads (many,
smaller microcontrollers, such as the ATmega 328p, of Arduino fame, have
trouble with multiple threads).

When a Thread is created, as in our USB Host example, it calls the function
given in its parameters (keyboard_task, in this case). The threaded function
runs while the rest of the program continues at the same time (in theory, the
“Flash an LED forever” section runs while “keyboard_task” is executing
simultaneously).

If you would like more control over threads and the scheduling, take a look
at mbed’s Real Time Operating System (RTOS) library.

Going Further

Adding USB lets us connect many different peripherals to our mbed.
Additionally, we learned about threading, which lets us run multiple
processes at the same time.

Beyond the Tutorial

• Make the backspace key actually delete characters on the LCD
• Use the graphics functions of the LCD to control a ball with the

keyboard’s arrow keys
• Use a mouse to control a ball around the LCD (Hint: see

USBHostMouse)
• Read some files on a USB flash drive (Hint: see USBHostMSD)

Digging Deeper

• HowStuffWorks has a great overview of USB
• If you are particularly bored (or need the real source material), take a

look at the newest USB Specification
• Read about Real Time Operating Systems

Experiment 7: USB Device
This tutorial covers USB devices with the mbed LPC1768. Using a USB
mini-B breakout and some buttons, we enumerate the mbed as a USB
mouse and control the computer’s pointer with the buttons.

Page 53 of 85

mbed Starter Kit - Part 7: USB Device SparkFun Wish List

Suggested Reading

• USB Overview
• USB Human Interface Device (HID)

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary. The experiment will be using 4x
10kOhm resistors.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
USB's breakout board.

Resistor 10K Ohm 1/4 Watt PTH - 20 pack (Thick Leads)
PRT-14491

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

SparkFun USB Mini-B Breakout
BOB-09966

This new version now has all 5 pins broken out on the connector. We…

(4) Momentary Pushbutton Switch - 12mm Square
COM-09190

This is a standard 12mm square momentary button. What we really li…

(2) Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Page 54 of 85

Schematic

Click on schematic to view larger image.

Connections

Connect the LPC1768 to the USB mini-B breakout and buttons.

Fritzing Diagram

Hookup Table

Place the LPC1768 in the first breadboard with pin VOUT in position i1 and
pin 20 in position b20.

Connect the rest of the components as follows:

Component Breadboard 1 Breadboard 2

Mini USB
Breakout*

h25
(GND)

h27
(D+)

h28
(D-)

h29
(VCC)

Pushbutton d2 d4 g2 g4

Pushbutton d10 d12 g10 g12

Pushbutton d18 d20 g18 g20

Pushbutton d26 d28 g26 g28

10K Resistor i2 (+)

10K Resistor i10 (+)

10K Resistor i18 (+)

10K Resistor i26 (+)

Page 55 of 85

Jumper Wire j1 (+)

Jumper Wire a1 (-)

Jumper Wire a2 f29

Jumper Wire f25 (-)

Jumper Wire j9 f28

Jumper Wire j10 f27

Jumper Wire a5 h2

Jumper Wire a6 h10

Jumper Wire a7 h18

Jumper Wire a8 h26

Jumper Wire (-) h4

Jumper Wire (-) h12

Jumper Wire (-) h20

Jumper Wire (-) h28

* Pins not listed are not used.

The Code

In order to make the mbed act like a USB mouse for this walkthrough, we
will rely on mbed’s USBDevice library. This library contains all the
necessary functions to enumerate as a USB device to a computer and
function as a mouse.

Libraries

Navigate to the mbed.org, login, and navigate to your Compiler.

Create a new program with the “Blinky LED Hello World” template. Name it
something like “usb_device.”

Navigate to the following pages and import each library into your
“usb_device” program.

• USBDevice

The mbed library should already be imported if you used the “Blinky”
template.

Page 56 of 85

Program

Click on “main.cpp” in your project, remove the template code, and copy in
the following code.

Page 57 of 85

// USB Device demo control mouse pointer with buttons

#include "mbed.h"
#include "USBMouse.h"

// USB Mouse object
USBMouse mouse;

// Define buttons
DigitalIn button_up(p5);
DigitalIn button_down(p6);
DigitalIn button_left(p7);
DigitalIn button_right(p8);

DigitalOut myled(LED1);

int main() {
int x = 0;
int y = 0;

while (1) {

// Determine mouse pointer horizontal direction
 x = button_left ^ button_right;

if (button_right) {
 x = 1 * x;
 }

// Determine mouse pointer vertical direction
 y = button_up ^ button_down;

if (button_down) {
 y = 1 * y;
 }

// Move mouse
 mouse.move(x, y);

// Wait for next cycle
wait(0.001);

 }
}

Run

Compile the program and copy the downloaded file to the mbed.
Disconnect the USB mini-B that you used to program your mbed and
connect it into the USB mini-B breakout board.

Page 58 of 85

Make sure that the other end of the USB cable is plugged into your
computer and press the mbed’s restart button. Your computer should tell
you that a USB input device has been detected. Start pressing the four
buttons on the breadboard.

Your mouse pointer should start moving around!

Concepts

We really only covered one important new concept in this tutorial: USB
devices. Instead of acting as a USB host to accept peripherals, we turned
the mbed into a USB peripheral. This allowed us to plug the mbed into a
computer and control some functions normally assigned to dedicated
accessories (a mouse, in this case).

USB Device

A lot of things need to happen to show up as a USB device on a computer.
The process of attaching a device, getting assigned a unique identifier and
a driver is called “USB enumeration.” Luckily, the mbed USBDevice library
handles all of the device-side enumeration details for us.

Being able to enumerate as a USB device opens up a world of possibilities
for us. We can make the mbed act as a mouse, a keyboard, an audio
device, a mass storage device, and so on. Note that the LPC1768 only
supports USB Full-Speed, which means that the higher rates of USB 2.0
and 3.0 are not available to us. If you wanted to make your own mbed
Flash Drive, it would be quite slow.

If you want to get really involved in USB device development, see Jan
Axelson’s USB Complete book.

Going Further

Becoming a USB device lets us interact with many different computers and
mobile devices. You could even make your own keyboard and mouse!

Beyond the Tutorial

• Make the buttons act as mouse clicks instead of moving the pointer
• Make the buttons act as keyboard keys (Hint: see USBDevice

Keyboard)
• Create a program that automatically opens up a text editor and types

out a message to the user whenever the mbed is plugged in as a
USB device

Digging Deeper

• Look into the specifics of USB enumeration and messages
• Learn about making your own USB device drivers for Windows, OS

X, and Linux

Page 59 of 85

mbed Starter Kit - Part 8: Temperature Logging SparkFun Wish

List

Experiment 8: Temperature Logging
We are going to move on to a very important topic for embedded systems:
sensor data logging! Many microcontroller projects are built around the
concept of taking some sort of measurement (temperature, distance, light,
acceleration, GPS coordinates, heart rate, etc.) and logging it. This data is
examined (later or in real time) to look for patterns or notify the user of
some kind of anomoly.

In this tutorial, we will have the mbed LPC1768 take measurements from a
temperature sensor, log the data to a micro SD card, and print out the
contents of the SD card to a console.

Suggested Reading

• How does a temperature sensor work?
• Serial Peripheral Interface (SPI)
• mbed’s SD Card File System Library

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
microSD socket's breakout board.

microSD Card with Adapter - 16GB (Class 10)
COM-13833

This is a class 10 16GB microSD memory card, perfect for housing o…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Page 60 of 85

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

SparkFun microSD Transflash Breakout
BOB-00544

Breakout board for the microSD socket that is not much bigger than y…

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Temperature Sensor - TMP36
SEN-10988

This is the same temperature sensor that is included in our [SparkFun…

Schematic

Click on schematic to view larger image.

Connections

Connect the LPC1768 to the micro SD card breakout board and TMP36
temperature sensor. Insert a micro SD card into the breakout board.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table below.

Fritzing Diagram

Hookup Table

Place the LPC1768 in a breadboard with pin VOUT in position i1 and pin 20
in position b20.

Connect the rest of the components as follows:

Component Breadboard

MicroSD
Transflash
Breakout*

g24
(CS)

g25 (DI) g26
(VCC)

g27
(SCK)

g28
(GND)

g29
(DO)

Page 61 of 85

Temperature
Sensor -
TMP36

c28
(V+)

c29
(SIGNAL)

c30
(GND)

Jumper Wire j1 (+)

Jumper Wire a1 (-)

Jumper Wire a5 f25

Jumper Wire a6 f29

Jumper Wire a7 f27

Jumper Wire a8 f24

Jumper Wire (-) f28

Jumper Wire (+) f26

Jumper Wire a15 a29

Jumper Wire (-) a30

Jumper Wire (+) a28

* Pins not listed are not used.

Tips

Make sure you face the TMP36 temperature sensor the correct way. The
flat side of the black package body is considered the front. See this tutorial
to learn more about polarity.

The Code

We plan to read an analog voltage from the sensor, and to do this, we rely
on the mbed’s analog-to-digital converter (ADC) built into the chip. Every
time we read this value, we convert it to an actual temperature in degrees
Celsius and log it to the SD card. Additionally, we will be using the mbed’s
built-in USB-to-Serial device to print our logged values to a console on our
computer.

Software

Windows

If you are on Windows, we will be relying on a program called “PuTTY.” You
are also welcome to use any number of other serial terminal programs,
such as CoolTerm or Realterm.

Navigate to the PuTTY homepage and download putty.exe.

Page 62 of 85

There is no installation process, so just copy putty.exe to some place you
will remember, such as your desktop.

Additionally, we need to install a Serial Port driver if you are on Windows.
Navigate to mbed’s Windows serial configuration page and download the
latest driver.

Double click the downloaded file and follow the on-screen instructions to
install the driver.

Mac OS X

Good news! If you are on a Mac, you already have the necessary serial
drivers and program. We will be using the screen command.

Linux

Just like Mac, you should have the serial driver and tools already installed.
If not, look into getting screen or another serial console tool.

If you need to install screen, see this guide for yum or this guide for apt-get.

Libraries

Navigate to the mbed.org, login, and navigate to your Compiler.

Create a new program with the “Blinky LED Hello World” template. Name it
something like “temp_logging.”

Navigate to the following pages and import each library into your
“temp_logging” program.

• SDFileSystem

The SDFileSystem library should appear in your temp_logging project.

Program

Click on “main.cpp” in your project, remove the template code, and copy in
the following code.

Page 63 of 85

// Temperature logging demo record temperatures to SD card a
nd print them to
// the console every 10 seconds

#include "mbed.h"
#include "SDFileSystem.h"

// Analog input (pin 15)
AnalogIn ain(p15);

// USB serial (tx, rx)
Serial pc(USBTX, USBRX);

// SD card (SPI pins)
SDFileSystem sd(p5, p6, p7, p8, "sd");

// Timer for our timestamps
Timer timer;

int main() {

 FILE *file;
float voltage_in;
float degrees_c;
int i;
int c;

// Start our timer
 timer.start();

// Open file for writing
 file = fopen("/sd/temp_data.txt", "w");

if (file == NULL) {
error("ERROR: Could not open file for writing!\n\r");
return 1;

 }

// Tell the user we need to wait while we collect some dat
a
 pc.printf("\nCollecting data (Do not remove SD Car
d!) ...\n\r");

// Collect temperatures with timestamps every second
for(i = 0; i < 10; i++) {

 voltage_in = ain * 3.3;
 degrees_c = (voltage_in 0.5) * 100.0;

fprintf(file, "%2.2fs: %3.1f deg C\n\r", timer.read
(), degrees_c);

wait(1);
 }

// Close file and reopen it for reading
fclose(file);

 file = fopen("/sd/temp_data.txt", "r");
if (file == NULL) {

error("ERROR: Could not open file for reading!\n\r");
return 1;

 }

// Print results to console
 pc.printf("Temperature data:\n\r");

while(1) {
 c = fgetc(file);

if (c == EOF) {

Page 64 of 85

break;
 }
 pc.putc(c);
 }

// Close the file and finish
fclose(file);

 pc.printf("Done! Safe to remove SD card\n\r");

return 0;
}

Run

Windows

Compile the program and copy the downloaded file to the mbed.

Click the Windows Start button and search for “device manager.”

Click on “Device Manager.” You should see the Device Manager open up.
Click to expand “Ports (COM & LPT).” Make a note of which COM port is
listed as the “mbed Serial Port” (COM12, in this example).

Note: If you do not see the mbed Serial Port listed, you need to install (or
re-install) the mbed Windows serial driver.

Page 65 of 85

Double-click the putty.exe icon to start PuTTY. In the left pane, click
“Terminal” to configure PuTTY. Check “Implicit CR in every LF” so that text
appears properly aligned in our console.

Click “Session” in the left pane. Click the “Serial” radio button and change
“Serial line” to your COM port (COM12 in this example). Leave speed at
9600. Click “Open” to start a serial terminal.

Press the mbed’s reset button. You should see some text appear in the
console. Wait 10 seconds while the mbed makes some temperature
readings, and it will print them to the terminal.

If you see a message like “ERROR: Could not open file for writing!” it
means that you do not have an SD card plugged in, you do not have the SD
Card breakout connected properly, or the SD card is not formatted properly.

If you plug the SD card into your computer and open up the “temp_data.txt”
file with a text editor (located in the SD card’s root directory), you should
see the logged data.

Page 66 of 85

Mac OS X

First, we need to find out which USB serial port the mbed is attached to.
Unplug the mbed. Open up Finder and navigate to Applications → Utilities
→ Terminal.

Enter the following command:

ls /dev/tty.*

Make a note of which devices appeared. Plug the mbed back into your Mac
and enter the command again:

ls /dev/tty.*

A new tty device should appear. For example, in my case, I saw
“tty.usbmodem1452” show up. Make a note of which new tty device
appeared. Open a serial terminal using the screen command:

screen /dev/tty.<your USB serial device> 9960

Press the reset button on your mbed and wait while temperature data is
collected. After about 10 seconds, you should see the temperature data
appear in your Terminal.

You can also plug the SD card into your computer and open the
“temp_data.txt” file with a text editor (located in the SD card’s root
directory).

Page 67 of 85

Linux

To begin, we need to find out which USB serial port the mbed is attached
to. Unplug the mbed. Open a terminal and enter:

ls /dev/tty*

Plug the mbed back into your computer and enter the command again:

ls /dev/tty*

A new tty device should appear. In my case, I saw “/dev/ttyACM0” show up.
Make a note of which new tty device appeared. Use the screen command
to open a serial terminal to the mbed:

sudo screen /dev/<your tty device> 9960

Note that you will likely need root access to open the serial terminal!

Press the reset button on your mbed and wait while temperature data is
collected. After about 10 seconds, you should see the temperature data
appear in your Terminal.

You can also plug the SD card into your computer and open the
“temp_data.txt” file with a text editor (located in the SD card’s root
directory).

Concepts

In this tutorial, we introduced several new concepts. In particular, sending
text over serial to a terminal is incredibly useful for debugging and
interacting with your project.

Page 68 of 85

Serial Terminal

The serial terminal dates back the first computers and mainframes of the
1960s. In order to interact with a mainframe, several terminals were
connected to the mainframe, often with an RS-232 serial connection. These
terminals offered a simple keyboard and monitor with a command line
interface. Users could type commands and get a response back from the
mainframe.

With the rise of the graphical user interface (GUI), such as Windows,
terminal programs became emulated inside of the GUI and usually only
reserved for more advanced functions. Because many low-power
embedded systems, such as the LPC1768, are incapable of running a GUI,
we rely on a serial terminal to communicate with the device. Check out our
tutorial on Serial Terminal Emulators) for more info.

We use a USB cable to send and receiver serial commands from the
computer to the LPC1768. The mbed platform converts the USB signals to
UART, which is interpreted by the LPC1768 processor. By using a program
like PuTTY, we can send serial commands over that USB channel. If we
write serial commands in our mbed program, we can create a
communications link between the mbed and our serial terminal. This allows
us to interact with the mbed in real time!

Using a serial terminal like this is crucial in working with embedded
systems. We can add printf statements in our program that provides status
updates, gives the contents of variables, and informs us of errors. Using a
serial terminal in this manner is extremely helpful in debugging our
embedded programs.

Analog to Digital Converter (ADC)

We used the mbed’s internal ADC to take measurements from the
temperature sensor. The TMP36 Temperature Sensor works by amplifying
the voltage drop across the base and emitter of a transistor as temperature
changes.

Pins 15 - 20 on the LPC1768 are capable of analog to digital conversions.
Voltages between 0V and 3.3V are broken up (quantized) into steps. The
LPC1768 uses a 12-bit value to denote the ADC readings, which means
that there are 4096 possible values for voltages. In other words, 0V - 3.3V
are broken down into 0.0008057V steps. Reading 0 on the ADC indicates
0V, reading 1 indicates 0.0008057V, reading 2 indicates 0.0016114V and
so on.

However, note that in our program, we read the analog value (ain) as a float
value between 0.0 and 1.0, where 1.0 is 3.3V. So, in order to determine the
actual measured voltage, we multiplied ain * 3.3. Using the measured
voltage, we calculated the temperature in Celsius by the equation (Vmeas -
0.5) * 100.0, as per the TMP36 datasheet.

If you would like to read more about ADC, see this Wikipedia article.

Serial Peripheral Interface (SPI)

SPI is a de facto communications bus standard, which means that its pins
and protocol are just accepted by industry (versus being spelled out in an
actual standard by a governing body, like I2C). SPI generally requires 4
pins: SCK, MISO, MOSI, and CS. Because MISO and MOSI transmit data
simultaneously, full duplex communications are possible. SPI is capable of
faster transfer speeds than I2C, but can only have 1 master and usually
needs 1 extra pin dedicated for each device added on the bus. Read more
about SPI here.

SD Cards

Page 69 of 85

Secure Digital (SD) cards grew out of MultiMediaCards (MMC) in 1999 as a
small, transportable form factor for non-volatile flash memory. There are
several ways to transfer data to and from SD cards: SPI Mode, One-Bit SD
Bus Mode, and Four-Bit SD Bus Mode. We used SPI in this project, as it is
the easiest to use and does not require an SD host license. Four-Bit mode,
on the other hand, requires a host license and offers much faster transfer
speeds. Read more about the SD format here.

FAT File System

The mbed SDFileSystem library relies on the File Allocation Table (FAT) file
system to read and write files in the SD card. The FAT file system is an old
and extremely simple file structure system that is still used by most low
storage volume flash media (e.g. SD cards, flash drives, etc.) today. It is
supported by every major operating system. In basic terms, the front
section of the disk partition is reserved for the file allocation table, which is
a simple index that contains the name of the file (or folder) and its location
in the partition. Reading the FAT gives you all the files and folders within
the disk partition, and you can use this information to read, write, and
modify specific files. You can learn more about the FAT file system here.

File Descriptor

In order to read and write to a file (located in our FAT file system!), we need
to use a file descriptor to access that file.

In our program, we create a file descriptor with

FILE *file;

The pointer *file will be used as a handle to manage all of our file
operations.

We then open a file from our FAT file system (namely, the temp_data.txt file
on our SD card) and assign it to our handle. Notice the “w” parameter,
which asks for “write” permissions to the file. If the file does not exist, it is
created.

file = fopen("/sd/temp_data.txt", "w");

After we attempt to open the file, we check to make sure that the file was
indeed opened for writing:

langauge:c
if (file == NULL) {
 error("ERROR: Could not open file for writing!\n");
 return 1;
}

If the file was not opened successfully, the file variable does not point to
anything (i.e. NULL). In this case, we print an error and stop the program.

We use the fprintf() function to write characters to the file.

fprintf(file, "%2.2fs: %3.1f deg C\n", timer.read(), degrees_
c);

Notice that we passed in the file handle as our first parameter, which tells
fprintf() where to put the characters.

Once we are done writing to the file, we close it with

fclose(file);

Page 70 of 85

It’s always a good idea to close a file when you are done with it! Otherwise,
you might corrupt the file (or, worse, the filesystem) if your program starts to
behave unexpectedly with a file still open.

We can perform a similar procedure to read from a file. In our example, we
use fgetc() to read characters from the file one at a time.

Lack of Super Loop

What happened to our while(1) statement? All of our other examples
included this loop-forever statement to make up our super loop architecture.
In this tutorial, we only wanted the program to run once and then stop. To
do this, we do not include a while(1) statement and exit main() with

return 0;

After our program executes the return line in main(), the program stops
running. We need to restart the mbed board (with the button) to run the
program again.

Generally, it is good practice to include an empty while loop:

while (1) { }

to end your program in an embedded system. We did not include it to show
that you can get away without it, and the program will still execute (only
once, though!).

You can read more about return values from main().

Going Further

Sensor reading and logging is one of the most useful features of embedded
systems. Additionally, we looked at how we can use a terminal program to
interact with the mbed, which is important for debugging projects.

Beyond the Tutorial

• Right now, the SD card is at risk for being ruined if you remove it or
shut off power in the middle of a write operation. Change the code so
that the file is only ever opened and written to just after a
measurement is made.

• Change the code so that measurements are taken once per minute
and do not stop after just 10 readings.

• Make the mbed consume less power between readings (Hint: see the
PowerControl library)

• Have the mbed post the collected data once per day on a
data.sparkfun.com data stream. You’ll be able to see some
interesting patterns in the temperature data after a few days!

Digging Deeper

• Read about the history of computer terminals
• Read more about the SD card format
• Look into the specifics of the FAT file system

Experiment 9: PWM Sounds
Let’s make some music! By using the pulse-width modulation (PWM) pins
on the mbed LPC1768 and a speaker (or headphones), we can make
rudimentary sounds. By controlling the PWM frequency, we can create
specific notes in the music scale. While it won’t sound like a full-size
orchestra, the notes (and perhaps the song) will be recognizable.

This tutorial will cover how to connect a headphone jack to the mbed and
control the PWM pins to create basic sounds.

Page 71 of 85

mbed Starter Kit - Part 9: PWM Sounds SparkFun Wish List

Note: You will need a set of headphones or speakers to hear the sounds.

Suggested Reading

• Pulse-Width Modulation
• How Sound Works

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
TRRS jack's breakout board.

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

SparkFun TRRS 3.5mm Jack Breakout
BOB-11570

TRRS connectors are the audio-style connectors that you see on som…

In addition to the listed parts, you will also need a set of headphones or
speakers (with a 3.5mm plug) to complete the tutorial.

Schematic

Page 72 of 85

Click on schematic to view larger image.

Connections

Connect a PWM output pin of the LPC1768 to the TIP of the audio jack
breakout. Also, connect the tip to RING1 of the audio jack in order to get
sound out of both the left and right speakers. Do not connect anything to
RING2!

Fritzing Diagram

Hookup Table

Place the LPC1768 in a breadboard with pin VOUT in position i1 and pin 20
in position b20.

Connect the rest of the components as follows:

Component Breadboard

TRRS 3.5mm Jack
Breakout*

b27
(TIP)

b28
(RING1)

b30
(SLEEVE)

Jumper Wire a1 d30

Jumper Wire j20 e27

Jumper Wire c27 c28

* Pins not listed are not used.

The Code

To make sounds, we need to modulate our PWM pin with a particular
frequency. Luckily, we can control the precise frequency of the PWM within
the mbed. If you looked into how PWM works, you’ll notice that it is a
square wave. Square waves do not make the most pleasant sound, but it
will be good enough for our purposes.

Program

This demo is simple! We don’t need any libraries.

Navigate to the mbed.org, login, and navigate to your Compiler.

Page 73 of 85

Create a new program with the “Blinky LED Hello World” template. Name it
something like “pwm_song.”

Click on “main.cpp” in your project, remove the template code, and copy in
the following code.

Page 74 of 85

// Plays a familiar melody using PWM to the headphones. To fin
d the frequencies
// of notes, see http://en.wikipedia.org/wiki/Piano_key_freque
ncies
// Based on the "speaker_demo_PWM" program by Jim Hamblen

#include "mbed.h"

#define VOLUME 0.01
#define BPM 100.0

PwmOut pwm_pin(p21);

// Plays a sound with the defined frequency, duration, and vol
ume
void playNote(float frequency, float duration, float volume) {
 pwm_pin.period(1.0/frequency);
 pwm_pin = volume/2.0;

wait(duration);
 pwm_pin = 0.0;
}

int main()
{

float beat_duration;

// Calculate duration of a quarter note from bpm
 beat_duration = 60.0 / BPM;

// Loop forever
while(1) {

// First measure
playNote(391.995, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(391.995, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(391.995, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(311.127, (0.75 * beat_duration), VOLUME);
playNote(466.164, (0.25 * beat_duration), VOLUME);

// Second measure
playNote(391.995, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(311.127, (0.75 * beat_duration), VOLUME);
playNote(466.164, (0.25 * beat_duration), VOLUME);
playNote(391.995, ((2 * beat_duration) 0.1), VOLUM

E);
wait(0.1);

// Third measure
playNote(587.330, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(587.330, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(587.330, (beat_duration 0.1), VOLUME);
wait(0.1);
playNote(622.254, (0.75 * beat_duration), VOLUME);
playNote(466.164, (0.25 * beat_duration), VOLUME);

// Fourth measure
playNote(369.994, (beat_duration 0.1), VOLUME);
wait(0.1);

Page 75 of 85

playNote(311.127, (0.75 * beat_duration), VOLUME);
playNote(466.164, (0.25 * beat_duration), VOLUME);
playNote(391.995, ((2 * beat_duration) 0.1), VOLUM

E);
wait(0.1);

 }
}

Run

Compile the program and copy the downloaded file to the mbed. Connect a
set of headphones or speakers to the audio jack. Press the mbed’s reset
button, and you should hear a tune come out of your headphones or
speakers!

If the volume is too low, adjust the VOLUME constant in the program (try
0.1 or 1).

Concepts

Much like in our other PWM tutorial, we relied on pulse-width modulation to
emulate an analog signal (sound, this time). We also connected a
peripheral that allowed us to convert electrical signals into sound: a speaker
(or headphones, but these are nothing more than tiny speakers that wrap
around your head).

PWM for Sound

Much like in Part 2, we used a PWM to control the a signal. In this example,
we adjusted the period of the PWM (the inverse of the frequency) to control
the pitch of the musical note. We also adjusted the duty cycle of the PWM
to control the volume of the note.

If you looked at the code, you’ll notice that there is also a “duration”
parameter in the playNote function. This told the function how long to play
the note. So, by setting various volumes, frequencies (pitch), and durations,
we can play an entire song!

To read more about PWM, see this Wikipedia article.

Speakers

Speakers are fascinating pieces of technology, despite their seemingly
simple function. An electromagnet moves an attached membrane, or cone,
through a permanent magnet. An electrical current causes the
electromagnet to move at varying rates, which moves the cone in a similar
fashion. The cone forces air back and forth, which creates sound! At certain
frequencies, these moving airwaves can be heard by our ears.

To learn more about how speakers work, see this article.

Going Further

Making sounds with PWM can be useful for adding feedback into your
project. You could make chirps and buzzes to notify the user of important
information. That, or you could just make an R2-D2 clone.

Page 76 of 85

mbed Starter Kit - Part 10: Hardware Soundboard SparkFun

Wish List

Beyond the Tutorial

• Search for sheet music from your favorite song, and using a
note/frequency chart, make the mbed play your song

• Try using the digital-to-analog converter (DAC) pins to play songs
instead of PWM (Hint: see Jim Hamblen’s example)

• Can you make the DAC play a chord instead of a single note?

Digging Deeper

• As it turns out, you can use a combination of DAC and PWM to make
some interesting sounds. Read about their uses in synthesizers.

• In order to get louder sounds, we need to amplify our signal. Read
about how amplifiers work.

• Headphones have a long and interesting history. Check it out here.

Experiment 10: Hardware Soundboard
In the final tutorial of our 10-part series, we will make a hardware
soundboard using our mbed. We will store some .wav files on an SD card
and play one whenever a button is pressed. You could use it to interject
hilarious comments into any conversation!

Suggested Reading

• Analog vs. Digital
• Digital-to-Analog Converter (DAC)

The Circuit

This circuit can be made with parts in the SparkFun mbed Starter Kit. Also,
keep in mind that the LPC1768 box contains a USB mini-B cable for
programming and power.

Parts List

To follow this experiment, you would will need the following materials if you
did not order the SparkFun mbed starter kit. You may not need everything
though depending on what you have. Add it to your cart, read through the
guide, and adjust the cart as necessary. The experiment will be using 1x
330Ohm resistor.

Heads up! For anyone ordering the parts separately from the
SparkFun mbed starter kit, you will need to solder the header to the
microSD card's breakout board.

Resistor 330 Ohm 1/4 Watt PTH - 20 pack (Thick Leads)

Page 77 of 85

PRT-14490

mbed - LPC1768 (Cortex-M3)
DEV-09564

The mbed microcontroller is an ARM processor, a comprehensive set…Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a…

(2) Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

(4) Momentary Pushbutton Switch - 12mm Square
COM-09190

This is a standard 12mm square momentary button. What we really li…

SparkFun microSD Transflash Breakout
BOB-00544

Breakout board for the microSD socket that is not much bigger than y…

Transistor - NPN (2N3904)
COM-00521

These are very common, high quality BJT NPN transistors made by S…

Speaker - PCB Mount
COM-11089

This through-hole speaker is great for projects where you need somet…

Schematic

Click on schematic to view larger image.

Connections

Connect a digital-to-analog (DAC) pin of the mbed (pin 18, in this case) to a
330 Ω resistor and connect that resistor to the base of an NPN transistor
(2N3904). Connect the emitter of the transistor to ground and the collector
to the negative (-) side of the speaker. The positive side of the speaker
should be attached to +5V (the VU pin on the mbed). Note that the +/-
markings can be found on the underside of the speaker (there are no wires
on the speaker like in the Fritzing diagram).

To hook up the buttons, connect one side of each pushbutton to ground
and the other to pins 11, 12, 13, and 14 of the mbed.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table below.

Page 78 of 85

Fritzing Diagram

Hookup Table

Place the LPC1768 in the first breadboard with pin VOUT in position i1 and
pin 20 in position b20.

Connect the rest of the components as follows:

Component Breadboard 1 Breadboard 2

MicroSD
Transflash
Breakout*

h24
(CS)

h25
(DI)

h26
(VCC)

h27
(SCK)

h28
(GND)

h29
(DO)

Transistor -
NPN

(2N3904)

c27
(E)

c28
(B)

c29
(C)

330
Resistor

b24 b28

Pushbutton d2 d4 g2 g4

Pushbutton d7 d9 g7 g9

Pushbutton d12 d14 g12 g14

Pushbutton d17 d19 g17 g19

Speaker f25
(+)

e30
(-)

Jumper
Wire

j1 g26

Jumper
Wire

a1 (-)

Jumper
Wire

a5 g25

Page 79 of 85

Jumper
Wire

a6 g29

Jumper
Wire

a7 g27

Jumper
Wire

a8 g24

Jumper
Wire

g28 (-)

Jumper
Wire

a18 a24

Jumper
Wire

a27 (-)

Jumper
Wire

a29 a30

Jumper
Wire

j2 j25

Jumper
Wire

a11 j2

Jumper
Wire

(-) j4

Jumper
Wire

a12 j7

Jumper
Wire

(-) j9

Jumper
Wire

a13 j12

Jumper
Wire

(-) j14

Jumper
Wire

a14 j17

Jumper
Wire

(-) j19

* Pins not listed are not used.

Tips

Transistor

Make sure you are using the 2N3904 transistor and not the temperature
sensor! Note that the flat edge of the transistor is facing down in the Fritzing
diagram.

Speaker

Page 80 of 85

Notice that the speaker has the positive (+) and negative (-) pins labeled on
the underside. The speaker will fit directly on the breadboard, as the
Fritzing diagram has been modified to show where the speaker should be
plugged in (otherwise it would cover up the rest of the components in the
picture!).

Place the positive (+) terminal of the speaker into hole f25 of the
breadboard and the negative (-) terminal into hole e30. The speaker will be
angled across the breadboard, but it will leave enough room for wires to be
plugged into j25 and a30.

The Code

For our soundboard, we need to read files from an SD card, which means
using the SDFileSystem again. Additionally, we want to add another library
that allows us to play .wav files.

Libraries

Navigate to the mbed.org, login, and navigate to your Compiler.

Create a new program with the “Blinky LED Hello World” template. Name it
something like “soundboard.”

Navigate to the following pages and import each library into your
“soundboard” program.

• SDFileSystem
• wave_player

The libraries should appear in your soundboard project.

Page 81 of 85

Program

Click on “main.cpp” in your project, remove the template code, and copy in
the following code.

Page 82 of 85

// Soundboard that plays 1 of 4 .wav files stored on the SD ca
rd based on 1 of
// 4 buttons pressed

#include "mbed.h"
#include "wave_player.h"
#include "SDFileSystem.h"

// .wav files to play
const char *filenames[4] = { "/sd/good_morning.wav",

"/sd/questions.wav",
"/sd/lack_discipline.wav",
"/sd/stop_whining.wav"};

// Define buttons
DigitalIn button_1(p11);
DigitalIn button_2(p12);
DigitalIn button_3(p13);
DigitalIn button_4(p14);

// USB serial (tx, rx)
Serial pc(USBTX, USBRX);

// SD card
SDFileSystem sd(p5, p6, p7, p8, "sd");

// Audio out (DAC)
AnalogOut DACout(p18);
wave_player waver(&DACout);

// Play a .wav file
int playSound(int file_num) {

 FILE *file;

// Open sound file for reading
 file = fopen(filenames[file_num], "r");

if (file == NULL) {
error("ERROR: Could not open file for reading!\n");
return 1;

 }

// Play the sound file
 pc.printf("Playing sound clip %i\r\n", (file_num + 1));
 waver.play(file);

// Reset to beginning of file and close it
fseek(file, 0, SEEK_SET);
fclose(file);

return 0;
}

int main() {

// Use internal pullup resistors
 button_1.mode(PullUp);
 button_2.mode(PullUp);
 button_3.mode(PullUp);
 button_4.mode(PullUp);

 pc.printf("\r\nHardware Soundboard\r\n");

while(1) {

Page 83 of 85

// Figure out which button was pressed and play that f
ile

if (button_1 == 0) {
playSound(0);

 }
if (button_2 == 0) {

playSound(1);
 }

if (button_3 == 0) {
playSound(2);

 }
if (button_4 == 0) {

playSound(3);
 }

// Wait 10ms before sampling the buttons again
wait(0.01);

 }
}

Run

Insert the micro SD card into the USB to micro SD card adapter and insert
the USB adapter into your computer. Copy the following .wav files to the
SD’s root directory:

• good_morning.wav
• lack_discipline.wav
• questions.wav
• stop_whining.wav

Remove the SD card from your computer and plug it into the breakout
board on the soundboard project.

Compile the program and copy the downloaded file to the mbed. Press the
mbed’s reset button to start running the program. Press one of the 4
buttons to hear a sound clip!

Concepts

This project was larger than the others before it. There are a number of
things going on, but most of them we covered in previous tutorials.

Amplifier

Page 84 of 85

In addition to adding a speaker to play sounds, we created a very simple
amplifier to increase the signal strength (and the volume). We used an NPN
transistor (specifically, a 2N3904) that converts a small current through its
base into a larger current through its collector. If we tried to power the
speaker directly from the mbed’s pin, we would likely draw enough power to
hurt the processor. Audio amplifiers can be quite complex. Read more
about them here.

Internal Pull-ups

When we used buttons in previous tutorials, we used external pull-up
resistors on the buttons to prevent a floating pin. In order to save board
space for this project, we used mbed’s internal pull-ups. These are resistors
internal to the mbed processor and can be enabled for each of the pins with
the following line of code:

pin_name.mode(PullUp);

Going Further

In this demo, we combined many concepts to create a fun project. We
made a simple amplifier to play sounds and relied on the wave_player
library to read .wav files. Adding sound to a project can add a layer of
interactivity and bring it to life.

Beyond the Tutorial

• Download or create your own .wav files and play them using our
soundboard. Note: you might have to use an editing program like
Audacity to convert sound clips into .wav files if they do not play on
the mbed.

• Add lights! Program some LEDs to flash whenever a clip is being
played.

• You might need some extra components not found in the kit, but can
you get a sound recorder to work on the mbed? (Hint: see the Simple
Wave Recorder & Player library)

Digging Deeper

• Read about the internals of a WAVE file
• Look into how analog-to-digital converters (ADC) work
• Want to talk to your mbed with voice recognition? Check out Jim

Hamblen’s EasyVR tutorial

The End!

This demo finishes up our 10-part series on the mbed. We covered a
number of topics that are considered important to embedded systems:
buttons, LEDs, GPIO, ADC, DAC, interrupts, SPI, I2C, UART, etc. You had
the opportunity to search for libraries on mbed.org, import them into your
program, and run some basic firmware on the LPC1768. By now, you have
had a good exposure to the building blocks of embedded programming on
the mbed and should be ready to tackle your first project.

Make something cool! Take a picture of it and tag @sparkfun or
@mbedmicro on Twitter. Or, post your project to the mbed.org Cookbook.

Page 85 of 85

12/4/2017https://learn.sparkfun.com/tutorials/mbed-starter-kit-experiment-guide/all

