

+3.3V Low Power Slew Rate Limited Half-Duplex RS-485 Transceiver

- RS-485 and RS-422 Transceiver
- Operates from a single +3.3V Supply
- Interoperable with +5.0V logic
- Driver/Receiver Enable
- · Low Power Shutdown mode
- -7V to +12V Common-Mode Input Voltage Range
- Allows up to 32 transceivers on the serial bus
- Compatibility with the industry standard 75176 pinout
- Driver Output Short-Circuit Protection
- Slew Rate Limited Driver for Low EMI

DESCRIPTION

The **SP3483** device is part of a family of +3.3V low power half-duplex transceivers that meet the specifications of the RS-485 and RS-422 serial protocols. This device is pin-to-pin compatible with the **Exar** SP483 device as well as popular industry standards. The **SP3483** features **Exar's** BiCMOS design allowing low power operation without sacrificing performance. The **SP3483** is slew rate limited to reduce EMI and can meet the requirements of the RS-485 and RS-422 protocols up to 250kbps.

TRUTH TABLES

INPUTS			OUTPU		PUTS
RE	DE	DI	LINE CONDITION	В	Α
Х	1	1	No Fault	0	1
Х	1	0	No Fault	1	0
Х	0	Χ	Х	Z	Z

Table 1. Transmit Function Truth Table

ĺ	INPUTS			OUTPUTS
	RE	DE	A - B	R
ĺ	0	0	+0.2V	1
	0	0	-0.2V	0
	0	0	Inputs Open	1
	1	0	Х	Z

Table 2. Receive Function Truth Table

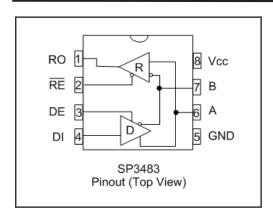
ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc}	+6.0V
Input Voltages	
Logic	0.3V to +6.0V
Drivers	0.3V to +6.0V
Receivers	+/-15V
Output Voltages	
Drivers	+/-15V
Receivers	
Storage Temperature	65°C to +150°C
Power Dissipation	
8-pin NSOIC	500mW
(derate 6.14mW/°C above	+70°C)

ELECTRICAL CHARACTERISTICS

T_{MIN} to T_{MAX} and V_{CC} = +3.3V +/-5% unless otherwise noted.						
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS	
DRIVER						
DC Characteristics						
Differential Output Voltage	GND		Vcc	Volts	Unloaded; R = ∞ ; Figure 1	
Differential Output Voltage	2		Vcc	Volts	With Load; R = 50Ω (RS-422); Figure 1	
Differential Output Voltage	1.5		Vcc	Volts	With Load; R = 27Ω (RS-485); Figure 1	
Change in Magnitude of Driver Differential Output Voltage for Complimentary states			0.2	Volts	R = 27Ω or R = 50Ω; Figure 1	
Driver Common Mode Output Voltage			3	Volts	R = 27Ω or R = $50Ω$; Figure 1	
Input High Voltage	2.0			Volts	Applies to DE, DI, RE	
Input Low Voltage			0.8	Volts	Applies to DE, DI, RE	
Input Current			+/-10	μΑ	Applies to DE, DI, RE	
Driver Short Circuit Current, V _{OUT} = HIGH			+/-250	mA	-7V ≤ V _o ≤ +12V; Figure 8	
Driver Short Circuit Current, V _{OUT} = LOW			+/-250	mA	-7V ≤ V _o ≤ +12V; Figure 8	
DRIVER						
AC Characteristics						
Max. Transmission Rate	250			kbps	RE = Vcc, DE = Vcc	
Driver Input to Output, t _{PLH}	400	900	1500	ns	Figures 2 & 9	
Driver Input to Output, t _{PHL}	400	900	1500	ns	Figures 2 & 9	
Differential Driver Skew		10		ns	t _{DO1} - t _{DO2} , Figures 2 and 10,	
Driver Rise or Fall Time		700	1000	ns	From 10%-90%; Figures 3 and 10	


 $\rm T_{MIN}$ to $\rm T_{MAX}~$ and $\rm V_{CC}$ = +3.3V +/-5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS	
DRIVER (continued)	DRIVER (continued)					
AC Characteristics						
Driver Enable to Output High		700	1300	ns	Figures 4 and 11,	
Driver Enable to Output Low		690	1300	ns	Figures 5 and 11	
Driver Disable Time from High		80	120	ns	Figures 5 and 11	
Driver Disable Time from Low		90	120	ns	Figures 4 and 11	
RECEIVER						
DC Characteristics						
Differential Input Threshold	-0.2		+0.2	Volts	-7V ≤ V _{CM} ≤ +12V	
Input Hysteresis		20		mV	$V_{CM} = 0V$	
Output Voltage High	Vcc-0.4			Volts	$I_{O} = -1.5 \text{mA}, V_{ID} = +200 \text{mV}$	
Output Voltage Low			0.4	Volts	$I_{O} = +2.5 \text{mA}, V_{ID} = -200 \text{mV}$	
Three-State (High Impedance) Output Current			+/-1	μΑ	0V ≤ V _o ≤ Vcc; RE = Vcc	
Input Resistance	12	15		kΩ	-7V ≤ V _{CM} ≤ +12V	
Input Current (A, B); V _{IN} = 12V			+1.0	mA	DE = 0V, V _{CC} = 0V or 3.6V, V _{IN} = 12V	
Input Current (A, B); V _{IN} = -7V			-0.8	mA	DE = 0V, V_{CC} = 0V or 3.6V, V_{IN} = -7V	
Short Circuit Current	7		60	mA	$0V \le V_{CM} \le V_{CC}$	
RECEIVER						
AC Characteristics						
Max. Transmission Rate	250			kbps	RE = 0V, DE = 0V	
Receiver Input to Output, t _{RPLH}	35	70	120	ns	Figures 6 and 12	
Receiver Input to Output, t _{RPHL}	35	70	120	ns	Figures 6 and 12	
Differential Receiver Skew		50		ns	t _{RPHL} - t _{RPLH} , Figures 6 and 12	
Receiver Enable to Output Low		45	70	ns	Figures 7 and 13; S ₁ Closed, S ₂ open	
Receiver Enable to Output High		45	70	ns	Figures 7 and 13; S ₂ Closed, S ₁ open	
Receiver Disable from LOW		45	70	ns	Figures 7 and 13; S ₁ Closed, S ₂ open	
Receiver Disable from High		45	70	ns	Figures 7 and 13; S ₂ Closed, S ₁ open	

 T_{MIN} to T_{MAX} and V_{CC} = +3.3V +/-5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Shutdown Timing					
Time to Shutdown	50	200	600	ns	RE = 5V, DE = 0V
Driver Enable from Shutdown to Output High			2000	ns	Figures 4 and 11
Driver Enable from Shutdown to Output Low			2000	ns	Figures 5 and 11
Receiver Enable from Shutdown to Output High			2500	ns	Figures 7 and 13; S_2 Closed, S_1 open
Receiver Enable from Shutdown to Output Low			2500	ns	Figures 7 and 13; S ₁ Closed, S ₂ open
POWER REQUIREMENTS					
Supply Current					
No Load		1000	2000	μA	RE, DI = 0V or V _{cc} ; DE = V _{cc}
		800	1500	μA	RE = 0V, DI = 0V or 5V; DE = 0V
Shutdown Mode			10	μA	DE = 0V, RE = V _{CC}

PIN FUNCTION

- Pin 1 RO Receiver Output
- Pin 2 RE Receiver Output Enable Active LOW
- Pin 3 DE Driver Output Enable Active HIGH
- Pin 4 DI Driver Input
- Pin 5 GND Ground Connection
- Pin 6 A Driver Output / Receiver Input Non-Inverting
- Pin 7 B Driver Output / Receiver Input Inverting
- Pin 8 Vcc Positive Supply

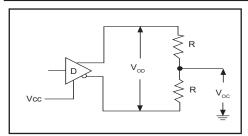


Figure 1. Driver DC Test Load Circuit

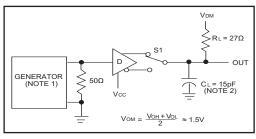


Figure 2. Driver Propagation Delay Test Circuit

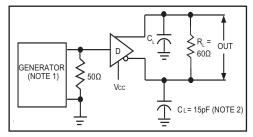


Figure 3. Driver Differential Output Delay and Transition Time Circuit.

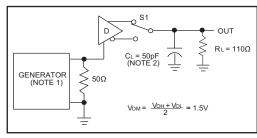


Figure 4. Driver Enable and Disable Timing Circuit, Output High

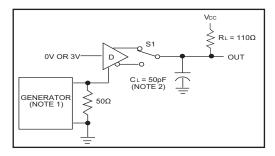


Figure 5. Driver Enable and Disable Timing Circuit, Output Low

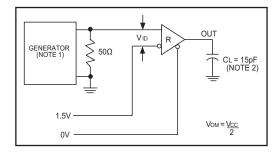


Figure 6. Receiver Propagation Delay Test Circuit

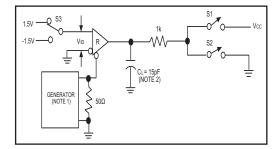


Figure 7. Receiver Enable and Disable Timing Circuit

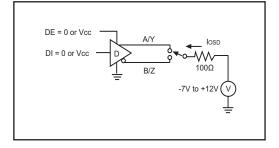


Figure 8. Driver Short Circuit Current Limit Test

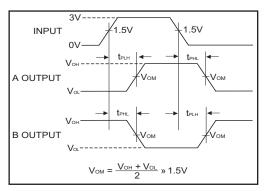
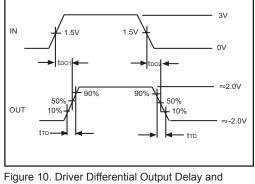



Figure 9. Driver Propagation Delay Waveforms

Transition Time Waveforms

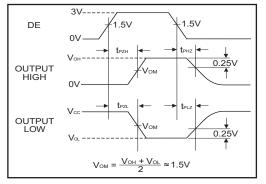


Figure 11. Driver Enable and Disable Timing Waveforms

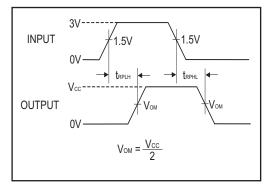


Figure 12. Receiver Propagation Delay Waveforms

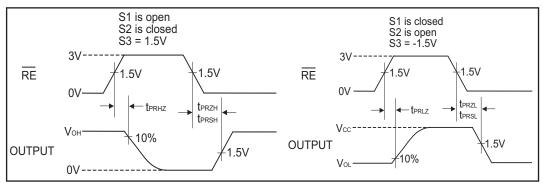


Figure 13. Receiver Enable and Disable Waveforms

NOTE 1: The input pulse is supplied by a generator with the following characteristics:

PRR = 250kHz, 50% duty cycle, $t_R < 6.0$ ns, $Z_Q = 50\Omega$.

NOTE 2: C, includes probe and stray capacitance.

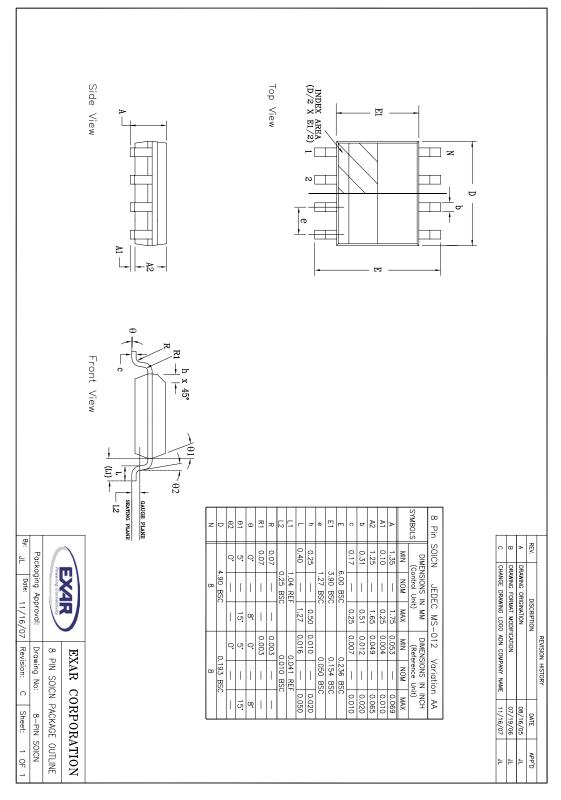
The **SP3483** device is part of a family of +3.3V low power half-duplex transceivers that meet the specifications of the RS-485 and RS-422 serial protocols. This device is pin-to-pin compatible with the **Exar** SP483 device as well as popular industry standards. The **SP3483** features **Exar's** BiCMOS process allowing low power operation without sacrificing performance.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers

The driver outputs of the **SP3483** are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 Volts to +3.3 Volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels. The drivers have an enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential driver outputs. A logic LOW on the DE (pin 3) will force the driver outputs into high impedance (high-Z).

The **SP3483** has internally slew rate limited driver outputs to minimize EMI. The transceivers will operate up to 250kbps. The 250mA $I_{\rm SC}$ maximum limit on the driver output allows the **SP3483** to withstand an infinite short circuit over the -7.0V to +12V common mode range without catastrophic damage to the IC.


Receivers

The **SP3483** receiver has differential inputs with an input sensitivity as low as ± 200 mV. Input impedance of the receivers is typically $15k\Omega$ ($12k\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receiver of the **SP3483** has a tristate enable control input \overline{RE} (Pin 2). A logic LOW on \overline{RE} will enable the receiver, a logic HIGH on \overline{RE} will disable the receiver.

The receiver of the **SP3483** will operate up to 250kbps. The receiver is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected (open circuit).

Shutdown Mode

The **SP3483** is equipped with a Shutdown mode. To enable the shutdown state, both driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 3) and a Logic HIGH on \overline{RE} (pin 2) will put the **SP3483** into Shutdown mode. In Shutdown, supply current will drop to typically $1\mu A$, $10\mu A$ maximum.

ORDERING INFORMATION						
Model	Temperature Range	Package Types				
SP3483CN-L	0°C to +70°C	8-pin NSOIC				
SP3483CN-L/TR	0°C to +70°C	8-pin NSOIC				
	-40°C to +85°C					
SP3483EN-L/TR	-40°C to +85°C	8-pin NSOIC				

Note: /TR = Tape and Reel

REVISION HISTORY

DATE	REVISION	DESCRIPTION
06/23/0	4	Legacy Sipex Datasheet
01/09/1	2 1.0.0	Convert to Exar Format. Update ordering information as a result of discontinued Lead type package options. Add new Figure 8 - Driver Short Circuit Current Limit Test Circuit. Correct type error for no load supply current.

Notice

EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2012 EXAR Corporation

Datasheet January 2012

Send your serial transceiver technical inquiry with technical details to: serialtechsupport@exar.com

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.